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Abstract. Using the replica technique we calculate the maximal possible difference between 
the leaming and the generalization error of a perceptron leaming a linearly separable Boolean 
classification from examples. We consider both spherical and king constraints on the couplings 
of the percepiron. investigate leamable as well as unleamible problems and study the special 
situation where the class of perceptrow considered is wtricled lo the version space. The results 
are compmd with the Vapnik-Chervonenkis bund and variants thereof. We find that these 
bounds are asymptotically tight within logarithmic corrections. 

1. Iniroduction 

Learning tasks of information processing such as recognition, classification and 
categorization from examples is a far reaching concept of general interest. In recent years 
statistical physics has contributed to the understanding of general features of this problem 
by analysing model situations which, on the one hand, are complex enough to show some 
of the generic aspects of the problem and, on the other hand, are. simple enough to allow 
a mathematical treatment. A particularly suitable scenario in this respect is given by a 
‘student’ perceptron trained to classify input pattems on the basis of examples provided by 
a ‘teacher’ perceptron [ l ,  21. A perceptron is the simplest feed-forward network consisting 
of N input units Si, j = 1, ..., N, and one output unit So connected to the inputs by 
real-valued couplings Ji (see figure 1). We will only consider binary units Sj = *I. For 
any input (Si}, the perceptron determines the output according to 

(1) 

thereby providing a binary classification of all 2N possible input patterns (Si}. Let us assume 
that one particular classification is fixed by a teacher or target perceptron T = (Ti). The 
aim for the student perceptron J = { 4)  is either to reproduce or, if this is impossible due 
to different restrictions on the vectors T and J ,  to approximate this target classification as 
faithfully as possible. The simplest procedure would of course be to set Jj = 1;. for all 
j = 1, . . . , N, corresponding in a sense to explicit programming. More interesting, however, 
is the situation where, the individual values T, of the teacher. couplings are not accessible to 
the student (figure 1). The classification {F of special patterns p = (e;], f i  = I, .~. . , p .  
by the teacher is known instead and the student is expected to infer the complete rule T 
from these examples. The pattems p together with their classification {,” by the teacher 
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Figure 1. Setup of the two-percephon scenario: A SNdent peMptron J hies to leam lhe 
binary classification defined by the teacher perceptron T on the basis of input-output examples 
provided by the teacher. 

form the so-called training set. The general strategy of the student will be to modify the 
coupling vector J in order to produce nearly the same classification of the pattems of the 
training set as the teacher. The hope is that for a sufficiently large training set this will result 
in an alignment of the vectors T and J which would imply that the student also classifies 
a pattem not contained in the training set similar to the teacher, i.e. that he will generalize 
from the examples to the rule. If the pattems of the training set are independently drawn 
at random from the set of all possible pattems according to some probability distribution 
P(.$p) the quantities of central interest are the training error U&) and the generalization 
error eJ.  The training error U J ( P )  denotes the fraction of pattems of the training set which 
the student classifies differently from the teacher. The generalization error is the probability 
that an arbitrary pattem drawn at random with the same probability distribution P (which 
therefore may or may not belong to the training set) is classified differently by teacher and 
student. The aim is to make this generalization error as small as possible. 

Using methods of statistical mechanics of neural networks, the learning and 
generalization error have been determined for various combinations of leaming rules, pattem 
statistics and network architectures in the limit N + 00, p + 00, (I! = p / N  = constant 
13-51, In this limit the fluctuations in the performance due to the random nature of most of 
the learning rules used are suppressed and one ends up with typical results for the learning 
and generalization errors. This means that for one particular realization of both the pattems 
in the training set and the learning schedule one finds with probability 1 the values of the 
statistical mechanics analysis for U J ( P )  and e,. 

Besides these rather recent studies in statistical physics there is, however, a much 
longer line of investigations of the same problem in mathematical statistics which so far 
has remained fairly unrelated to the work of the statistical mechanics community. From 
the point of view of mathematical statistics, the generalization is just a variant of the 
general problem of convergence of frequencies to probabilities: the learning error is the 
frequency of mistakes of the student on a test set, whereas the generalization error denotes 
the corresponding probability. For finite N ,  one has clearly U J ( ~ )  + eJ for p -+ CO. If 
one were able to characterize the fluctuations of uJ(p )  around eJ for finite p it would be 
possible to give estimates of er on the basis of u,(p). Since leaming rules are designed to 
make u,(p) very small (ideally zero), the decrease of  eJ with the size p of the training set 
could be quantified. 
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In fact, it is easy to describe the fluctuations of W J ( P )  around its h i t  eJ for a@ed 
student vector J. Since J and the pattems of the test set are uncorrelated, v&) obeys a 
Bernoulli distribution and we have by virtue of the Hoeffding inequality [6] 

(2) 
Hence, the probability that I J J ( ~ )  deviates from e ,  by an amount E is hounded~by 6 ( ~ ,  p).  
Note that a constant bound corresponds to e - l/a, as is familiar from the central limit 
theorem. The Occurence of two parameters,  the^ tolerated m r  €'and the confidence 8, 
in equation (2) is the trademark of the concept of probably approximately correct PAC) 
learning 171 frequently studied in computational science approaches. 

The Hoeffding inequality, however, is not sufficient to describe the generalization 
problem. The reason is that the student vectors J of interest are chosen in order to make 
v,(p) small and in particular are modified if new pattems are added to the training set. This 
$ves rise to skong correlation between the J's and the e%; in fact, these comelations are 
the central aim of learning. In this way the test set really becomes a training -set and it is 
impossible to apply the Hoeffding inequality. 

A way to characterize the convergence of the training error to the generalization error is 
to find a bound for the difference between them, which is ungorm on the set of all possible 
students (e.g. all perceptrons with real-valued coupling vector J) .  Such a bound is naturally 
given by a bound for the maximal possible difference 

2 
' ~ Prob[lwJ(p) - e l l  E] < a(€, p) = 2e-2G p .  

m,aUIvJ(P) (3) 

Prob(m,ax I V J ( P )  - e,l > €1 < Svc(~ ,  P ) .  

between U&) ande,. Estimating this maximum is often refered to as worst-case analysis. 
In a by now classical study, Vapnik and Chewonenkis have derived such a uniform bound 
of the form [SI 

(4) 

By definition, this bound applies to all possible student vectors J ,  in particular to those 
designed on the basis of the training set 5'. Hence, knowing the behaviour of u ~ ( p )  for 
some particu!ar learning rule, one can deduce bounds for the corresponding generalization 
error. If, for example, the learning rule achieves U,@) = 0 for all p, the probability that 
the generalization error will exceed some small parameter t decreases as 8"(~, p ) .  

Due to its generality, the Vapnik-Chewonenkis (VC) theorem is central in the 
mathematical theoIy of learning from examples and has been applied to several interesting 
situations [ e l l ] .  There have also been several refinements since its original derivation [12]. 
A very nice introduction into the subject of uniform convergence bounds for physicists is 
provided by 1131. 

In the present paper we make contact between the investigations of the generalization 
problem in the mathematical statistics and statistical mechanics community, respectively, 
by testing the vc bound against the actual pe$ormance of the worst student under several 
circumstances. Note that this is a partial worst-case scenario only, whereas the vc theorem 
also holds for the worst possible choice of the teacher T and of the distribution P(Ep) of 
the patterns forming the training set 1141, Our results will on the one hand highlight the 
tightness of the vc bounds in this case and on the other hand quantlfy the difference in 
performance between the worst and the typical student. This will also indicate, therefore, 
at least for the perceptron, whether a worst-case analysis is really too pessimistic, as is 
frequently claimed. We first discuss in section 2 the form of the VC theorem for perceptrons 
in the statistical mechanics limit N + CO, where we mainly follow [13]. Then we show 
in section 3 how one can calculate the performance of the worst student (instead of that 
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of the typical one) using methods of statistical mechanics. Sections 4 and 5 contain the 
corresponding replica calculation, where details are relegated to the appendix. In section 6 
we discuss the special case that all student vectors belong to the version space, i.e. they 
perform on the training set exactly like the teacher. Section 7 is devoted to student vectors 
restricted to the hypercube, Jj = il. Here we also discuss the situation of an unrealizable 
rule, in which no student J with V J @ )  = 0 for sufikiently large p exists. This can be 
viewed as a first step towards a worst-case analysis including the choice of the teacher. 
Finally, section 8 contains our conclusions. Part of the results of sections 4-6 have already 
been reported in a recent letter [15]. 
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2. vc bound for large perceptrow 

The vc theorem provides a uniform bound for the convergence of the leaming error u ~ ( p )  
to the generalization error eJ for a whole class P of classifiers J according to [SI: 

h o b  maxlv~(p)  -e11 z E < cA(2p)e-P'Z. (5) { JEP - 1  
Here A(m) is the so-called growth function defined as the maximal possible number of 
different classifications of m patterns that can be induced by classifiers of class P,  and c 
is a constant slightly larger than 6. The bound is uniform on P since it refers to the worst 
possible choice of J E P. Hence, it applies in particular to the J's of interest, namely those 
that were designed on the basis of the training set to produce small values of the learning 
error u,(p). The vC bound (5) is of little use if A(m) always grow exponentially with m. 
On the other hand, considering simple examples, one easily realizes that for small m the 
behaviour A(m) = 2"' is rather typical. The strength of the VC theorem lies in the fact that 
for any class of classifiers P there exists an integer number dVC (which may be infinite) 
called the vc dimension of this class such that [S, 161 

Hence, for p >) dvc, A(2p) grows only as a power of p and the bound (5) becomes 
effective. In the present paper we deal with perceptrons specified by a vector J E I W N  in 
the thermodynamic limit N + CO, p + CO, a = p/N = constant. For perceptrons without 
threshold the vc dimension is known to be dvC = N;  moreover, for p N the exact result 
A(m) = ZC,, ( ) holds [17]. Using the Stirling formula, replacing the sum by an 
integral and using peak integration, we then get for N + CO and ct > 1 

N - I  m-I 

(7) 
2aN - 1 

A(2aN) = 2y ( ) .., exp{N[2a log(%) - (2a - 1) log(& - I)]) 
i=O 

which, when combined with (5), yields 

h o b  max I!JJ(P) - e l l  > E < c exp ( N [ k  log(%) - (2a - 1) log(2a - 1) - ctc2]] . (8) 

For N + w this means that maXJEp Iv,(g) -ell  is bounded by a threshold 

with probability 1. Note that cVc(ct) - 
It is this bound E''@) for the maximal difference between learning and generalization 

error for the class of large perceptrons which we would like to test, in what follows. against 
the actual performance of the worst student. Let us finally note that for perceptrons one 

JEP 1 
€VC(ct) = JZ log 2a - (2 - l/a) log(2a - I) (9) 

for large a. 
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has w-&) = 1 - w,(p) and e-, = 1 - eJ . Hence if the maximum of ( u J ( ~ )  - e J )  is 
realized for a perceptron J* then the minimum of ( u J ( ~ )  - e,) is realized for -J* and 
m a ( V J ( p )  - e l )  = -min(u,(p) - e,) = m a  [ w f ( p )  -e,[. It is therefore possible to drop 
the absolute value. As one usually minimizes W J ( ~ )  on the training set in order to get low 
values for er as well, we will refer to the perceptron maximizing (e, - w f ( p ) )  as the worst 
student. 

3. Worst-case analysis using statistical mechanics 

Our aim in this section is to calculate explicitly 
€(a) = max(eJ - w~(a)) 

3 

as a function of the training set size a and to compare it with the threshold ~“ (a )  resulting 
from the VC theorem. Note that the asymptotic form (S) of the vc bound suggests that 401) 
is self-averaging for N + W. 

It is well known that in the situation of a sNdent perceptron J generalizing a teacher 
perceptron T, where both teacher and student obey the spherical normalization 

the generalization error e, depends on J only through the variable 
1 1 
N 

R = -T. J := -cr. J J  J .  

according to [18, 191 
1 

(13) 

It is therefore convenient to split the calculation of maiJ(eJ - WJ(~)) into two steps. First 
we determine the minimal possible training error u,, ,~(a,  R) of a perceptron J with overlap 
R with the teacher 2‘. Then the maximal possible value E ( @ ,  R) of (eJ - U,(@)) for these 
J’s  is given by 

eJ =~-COS-’ R. 
It 

1 
€(a, R) = -COS-’ R - um~(a, R) .  

z 
In the second step we maximize with respect to R to get 

€(a) = maxt(a ,  R). 
R 

To determine um~(a, R),  we' introduce the (extensive)~energy E(J,  01) of a perceptron J 
according to 

and calculate the free energy density 

where the average is taken over the statistics of the patterns Cfi, p = I ,  . . . , p .  forming the 
training set according to 

U8) P(.$’”) = n [$s(t:.- 1) + $s(t: + I)] 
i.P 
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and 
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d p e ( J ) = n d J i S ( N - J 2 ) 6 ( N R - J . T )  (19) 
i 

incorporates the constraints (1 1) and (12). For large values of j3 the free energy is dominated 
by J vectors with small energies. Accordingly 

(20) vm& R )  = lim f(a, 6, R). 
B+m 

The calculation of f(a, ,¶, R )  can be done using the replica trick and standard techniques 
from the statistical mechanics of neural networks [2,19,20]. Some of the intermediate steps 
are sketched in the appendix. The result is 

1 Q! 

2Bn Bn 
+-Trlog(Gnb + qab - R2) + -G(R,  qUb) 

where the minimum is over the n(n - l)/2 order parameters qUb = q", a # b and 

with Du := (dn/&)e-U2/2. The crucial step in the replica calculation is to find the 
correct minimum with respect to the n x n order parameter matrix qab in equation (21) in 
the limit n + 0. This can only be accomplished using special ansatze for the structure of 
the matrix qob. The simplest one is that of replica symmetry, to which we turn in the next 
section. 

4. Replica symmetry 

The replica-symmetric ansatz for the order parameter matrix qab is of the form qUb = q,  
a # b. It is then possible to simplify considerably the expression for the free energy 
(21). (22) with the result (see appendix) 

where 

H ( x )  := 1,"Dt and x := B(1 - 9). In order to find vm&, R )  we have to take the limit 
f i  + 00. Then the A-integral is dominated by the minimum V(&) of V(A) and we find 
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Using 

A&) = -t V(Ao) = 0 if O < t  
AI)(?) = 0 V(A0) = t2/2x if -m c: t c 0 (26) 
A&) = -t V0.0) = l/a if t c-JEj5 

we finally get 

COS-' R f / Dt(2 - --)H(-)]. at2 Rt (27) 
e 

1 - R2 
0 

RS umi,,(a, R)'  = - 

The value of x minimizing the RHS of (27) is given by the solution of 

Obviously x = CO corresponding to uEz(a. R )  = 0 is always a solution of (28). However 
for R c R-(a) there is another solution x < M giving rise to a negative value of the 
square bracket in (27). The result for U,,,&, R) is then 

R,i, is given by the (smaller) solution of 

The interpretation of these results is as follows. Due to the spherical constraint (11). all 
possible student vectors J lie on the~surface of an N-dimensional sphere with radius a. 
Let us take T as the north pole of this sphere. For every value of OT there is a subset of the 
sphere, called the version space V ,  containing all student vectors J that classify all training 
examples exactly like the teacher. If part of the rim defined by J . T = NR belongs to 
this subset we obviously get U,&. R )  = 0. Since by definition the teacher T belongs to 
the version space but the vector T does not, there must be a critical value Rmh(a)  of R 
such that for R < R,e no student J out of the version space with J . T = NR exists 
and accordingly u,~.((I. R )  0. Hence, R,i, as given by (30) marks the 'most southern 
tip' of the version space formed by the student with still zero training enor but the worst 
generalization ability. R,&) is plotted in~figure 2. Note that R h ( a  = 0) = -I and 
R,,& + CO) 4 1, in accordance with intuition. Moieover, Rm& = 2) = 0. A student 
vector J confined to the plane perpendicular to the teacher cannot take advantage of the 
correlations between input and output induced by the teacher and hence has to leam random 
classifications. This becomes impossible beyond the Gardner threshold (I, = 2 and hence 
R,i, = 0 for a = 2. 

In figure 3, U:",(., R )  is plotted as a function of R for three different values of a. For 
R ; R,,,in(a) one has .%(a, R )  = 0. At R , , & Y ) ,  u,h becomes positive and tends to 1 

.for R --f -1 for all a. 
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Figure 2 Minimal possible overlap Rmin of a student vector J sp-U belonging to the version 
space (top) and overlap R- of the student vector that realites the largest difference between 
training and generalization error (bottom) as a function of a in replica symmetq (full lines) and 
one-step replica Symmeq breaking (dotted tines). 
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F g r e  3. Minimal possible mining enor "*"(a. R )  as a function of k, overlap R with the 
teacher for a = 5,  a = 1.5;ind U = 0.5 (f" top to bottom). 

From (15). (14) and (29) we finally get the maximal possible difference E@, R) between 
the training and generalizahon error for a given R in replica symmeby 

cRs((I,R)=( z T m H ( + )  I-R if - l < R < R m a  (31) 

where x is given by the finite solution of equation (28). Figure 4 shows a plot of cRS(ci, R) 
as a function of R for the three values of (I in figure 3. For every value of (I there is a 
unique maximum cRS(ci) of cRS(ci, R )  with respect to R. Moreover, since av,,&R = 0 

I cos-' R if R,i. < R < 1 
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for R = R,,,i,, as follows from (29), this maximum lies always outside the version space, 
i.e. for a value RwDm of R with vg(a,  R) t 0. We have included RW&) in figure 2. 
Note that contrary to Rmh(a), Rwom(a) is always negative and tends to 0 for a +. CO. 

This can also be anticipated from figure 4. 
1 

. .  

\ I 
0.4 

0.2 

0 
-1 -0.0 -0.6 -0.4 -0 .2  0 0 , 2  0 .L  0.6 0.8 1 

R 

Figure 4. Maximal possible difference between Ihe generalizaiion and &iniOg error as a function 
of R for the same values of (I as in figure 3 (now from bottom to top). 

Piguie 5. Maximal possible difference between generalization and training en01 as a function 
of the training set size CI in replica symmetry (full line) and one-step replica symmetry breaking 
(dashed line). The dotted line is the rigourom upper bund provided by the vc theorem. 

The resulting behaviour of 8' (a)  is shown~in figure 5 together with the vc bound (9). 
As can be seen, the replica-symmetric result is well below the rigorous upper bound provided 
by the vc theorem for the values of a shown. On the other hand, solving the extremum 
equations for x and R asymptotically for a + bo one finds x - alp, R - a-'/3 -+ 0 and 
eRS(a) - O.%X-"~. This, however, violates thevc boundfor large CI (in fact, the respective 
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curves of figure 5 cross at a Z 4500) and, hence, the replica-symmetric calculation must 
be wrong, at least for large a. In fact, testing the local stability of the replica-symmetric 
saddle point [19, 211. we find local instability for a =- aAT. where aAT is the solution of 
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yielding OLAT 1.70. This instability should not come as a surprise since the maximum of 
eRS(u, R )  with respect to R is always realized at a point with umh(a, R) > 0. However, 
as we know from the theory of storing random classifications, a replica symmetry (with the 
cost function used here) is broken whenever perfect storage becomes impossible [22, 231. 
One may therefore suspect that the replica-symmetric solution is wrong even below aAT. To 
clarify these points we investigate, in the next section, €(a)  in one-step replica symmetry 
breaking. 

5. Replica symmetry breaking 

In order to obtain refined results for a > aAT and to test the global stability of replica 
symmetry, we calculate €(a) in this section using the ansatz of one-step replica symmetry 
breaking for the order parameter matrix qob. This ansatz is defined by the three parameters 
40, ql > qo and m according to qa" = 0, qab = q1 if la - bl < m, otherwise qab = qo. 
Plugging this into equation (21) we find after some algebra 

where now 

x = p(1 - ql)  and Aq = q1 - qo. A non-trivial limit of f(a. p ,  R) for B -b 00 results if 
x = O(1) and m -b 0 with j3m := cx = O(1). We then get 

1 
log(1 + c(1 - 90)) 

(35) 1 Rfo ) log ~ D L I  exp(-cnV(Ao)) 
cx 

where V(Ao) again denotes the minimum of V(k) .  We have performed the three-dimensional 
minimization in equation (35) numerically and used the result of a numerical determination 
of maXR (:cos-' R - w;iB(a, R)) to get the curve eRSB(a) which is included in figure 5. 
As can be seen, eRSB(a)  < eRs(a) for all a, as should be expected. Moreover, the replica 
symmetry broken solution exists also for a < OLAT so that the replica-symmetric solution, 
though locally stable, is incorrect. For OL < 1, qo is very near to unity and it is difficult to 
distinguish numerically between the replica-symmetric solution and the one using one-step 
replica symmetry breaking. Nevertheless we expect from our experience with the problem 
of Storing random chssifications [22,23] that for all a 0 there is a one-step RSB solution 
giving smaller values for €(a) than the corresponding replica-symmetric result. Hence for 
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the problem at hand the RS solution must he rejected everywhere, although it gives a very 
good approximation for €(a) if a < 1. As stated already in the last section, the mison for 
this is that the maximum of €(a, R )  always lies outside the version space (though very near 
to it for small a, see figure 4). The presence of errors, however, makes the solution space 
disconnected and this implies the breaking of replica symmetry. 

Finally it is important to see how the. asymptotic behaviour of €(a) for OL -+ 00 is 
modified by replica symmetry breaking. The results of the numerical minimization suggest 
cx /a  -+ 0 and c( 1 - q)  -+ 00 for a -+ 00. Using these ans;itze we find, to leading order, 

From this one gets the self-consistent saddle point x - 9/4(10ga)-~/~, (1 - 40) - 
3/2(loga)-', c - 4f i /9 ,6 ( l0ga )~ /~  and R = -9/~acu- ' /2( loga)-7~4,  yielding 

It is reassuring that, contrary to the replica-symmetric result, E ' ~ ~ ( L Z )  remains below the 
VC bound cvC(or) - for large a. On the other hand, it is difficult to estimate 
whether eRSB(a) indeed characterizes the performance of the worst student or if there 
are substantial corrections due to higher-order hreakings of replica symmetry. In fact, the 
asymptotic result qo --f 1 for LY + 00 suggests that one-step replica symmetry breaking 
is not sufficient, since we expect the smallest overlap scale (q(x = 0) in the full replica 
symmetry breaking scheme of Parisi) to tend to zem for a + 00 (see also section 7). 

6. Restriction to the version space 

For any value of ct there is a non-empty set of perceptrons producing exactly the same 
output for all patterns of the training set as the teacher. A simple but efficient learning rule 
consists of choosing the student vector J at random from this set, the so-called version 
space~l.'. Both the vc theorem and the statistical mechanics analysis are special in this case. 
The convergence of frequencies ta probabilities is much faster if the frequencies are close 
to zero. This allows us to improve the vc bound. By definition, one now has UJ(CX) = 0 
and therefore the vc bound is a hound for the generalization error e, itself. The result is 

(38) 

[IO, !I] 

Prob maxeJ > €1 < 4A(2p)2-Pf { JEV 

to be compared with (5). The convergence with p is now much faster, since we have 
E - I/p instead of E - l / G .  For p = aN and N -+ 00 we find for a > 1 by analogy 
to (8) the new threshold [I31 

E$%) = [2 l o g h  - (2 - ~ l / a )  log(2a - I)](log2)-' (39) 
which implies for large a 

log a 
fflog2' 

$C(a) - - , 
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For the statistical mechanics analysis, we have to determine the largest generalization error 
of a vector J still belonging to the version space V .  hreplica symmetry it is given by 
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where R,i. marks, as explained in section 4, the 'southemmost tip' of the version space 
and is given by equation (30). The resulting behaviour of eES(a) is shown in figure 6 
together with the vc bound. Again, statistical mechanics gives a result that is well below 
the rigorous upper bound provided by the vc theorem for the a-values shown. Solving (30) 
for a -+ CO one finds R,i, - 1 - 9z2/8a2, implying evRSfa) - 3 / ( h ) ,  so that in the 
present case the RS result remains below the upper bound for all values of a. 

....... 
........................... ........... ................ 

\ 

'. -.. 

....... 

'.. 

40 60 so 1 0 0  
alpha 

Figure 6. Generafiration error as a function of ol for the worst (full line) and typical (dashed 
line) sflldent out of the version space. The dotted line is the rigomus upper bound provided by 
a variant of the vc theorem for this situation. 

The version space is known to be convex and it is therefore tempting to assume that 
replica symmetry holds for all values of a. However, in order for RS to hold, it is 
not the version space itself which must be connected but the part of the rims given by 
N R  = E, Jjc that belong to i t  In figure 7 we have shown schematically for two values 
of R which part of the respective rims are cut if the first pattern is learnt. Furthermore, it 
is shown on the right-hand side that for R e 0 two pattems will always leave a connected 
part of the rim in the version space, whereas for R > 0 it is possible that two pattems cut 
the rim in disconnected pieces belonging to V .  Hence, for R > 0 we would expect that 
replica symmetry is broken. 

We have tested the local stability of the RS solution with the result that it becomes 
locally unstable for a > @AT with CUAT again given by (32). In the present case this gives 
CYAT = 2. Since R,i.(a = 2) = 0, this is in perfect agreement with the geometric argument 
above. To our knowledge, this is the first case where one can verify by an independent 
geometric argument that replica symmetry breaks down when the solution space splits into 
disconnected pieces. 

In order to quantify the implications of RSB for a > 2 we have investigated the solution 
with one-step RSB. The determination of Rmi,,(ol) in section 4 is not easily generalized to 
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Figure 7. Three-dimensional sketch of ihe student space. WO Mgs corresponding to a fixed 
overlap R wifh the teacher T are shown. If a paltem S is added to the mining sec the 
hyperplane perpendicular to if cuts that part of Ihe rings which is not compatible with the 
teacher classification (left). TWO pattems always leave a connected part of the ring if R c 0. 
For R =- 0, however, it is possible that the part of the ring belonging to Ihe version space is 
disconnected. This gives rise to replica symmetry breaking for R =- 0 (right). 

replica symmetry breaking. It is more convenient to use a different but equivalent approach.? 
To this end one calculates the typical value of the fractional volume V ( R ,  a) of the part of 
a rim corresponding to R that belongs to the version space: 

where the total volume of the rim for large N is given by 

V ( R ,  0) = exp (iN[1 f log2x  + log(1 - R*)]). (43) 
For given R, V ( R , a )  is a monotonously decreasing function of a and there is a 
threshold value crmu(R) such that V ( R ,  a,,(R)) = 0, much l i e  in the original Gardner 
calculation [24]. amu(R) is the inverse function of Rrmn(a). Calculating V,(R, a) 2 
exp(((1og V ( R ,  a)))) using the replica trick and replica symmetry, it is easy to find back 
equation (30) for &(a). Using the ansatz of one-step replica symmetry breaking as given 
in section 5 and introducing the same scaled parameters as introduced there, one gets after 
some algebra 

where the function g(q, c, R )  is given by 

Performing the minimization in (44) numerically, one finds that the RSB solution branches 
off continuously from the RS solution at ct = = 2. Moreover, the difference between 
the two results is very small, at most :%I at a 2 5.1 (cf figure 2). Hence, RS gives a 
very accurate approximation for R,,,i,(a) and E&) for all values of a. Most importantly, 
the asymptotic behaviour for large a is not modified by RSB. The results of the numerical 
minimization in equation (44) suggest c(1 - q) < CO and c(1 - 4)’ + O’for a + 00 

t We thank Marc Bouten for pointing this out to us. 
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from which one can obtain the asymptotic behaviour of g(q, c, R)  and finally or,,(R) in 
a self-consistent way, again with the result ~y(or) - 3/(2or). Since usually the first step of 
replica symmetry breaking gives the largest correction of the RS result it seems very unlikely 
that higher-order breakings of replica symmetry will modify this asymptotic behaviour. 

In figure 6 we have also included the generalization error .,"(or) of the typicul student 
out of the version space as determined in [2]. The corresponding asymptotic behaviour 
is @'(or) - 0.625/or, to be compared with EV(CY) - 3/2a for the worst student. We 
thus find that there is only a factor of 2.4 between the performance of the typical and the 
worst student. The logor in the vc bound 6;" - logcu/(or log2) stems from &placing the 
maximum of e, by the respective sum. This is a rather crude upper bound if all terms are 
of comparable magnitude as in the present case. In the situation where the students are 
restricted to the version space, the vc bound is therefore not tight but overestimates the 
generalization error of the worst student (asymptotically) by a factor of 21ogor/(3 log2). 

It is possible, however, to improve the vc bound by using inequalities from information 
theory [ 14,251 (see also [5]). One then finds that, irrespective of the distribution of pattems 
forming the training set, the generalization error of a student vector drawn at random from 
the version space is asymptotically bounded by Z/u. Our result, cy@) - 3 / k ,  shows that 
this is indeed an excellent bound and that the generalization performance cannot deteriorate 
significantly if one uses probability distributions other than (18) for the pattems e". 
7. king student 

Some new aspects of the generalization problem can.be studied within the simple scenario 
of two perceptrons if the coupling vectors J and T have to obey additional restrictions 
besides the spherical constraint (1 1). A simple example is the so-called king perceptron 
where the couplings are binary 4 = f l .  The generalization behaviour of the typical 
king student is known to be drastically different from the spherical case: at orc = 1.245 a 
discontinuous (first-order) transition occurs from rather poor (e - 0.26) to perfect (e = 0) 
generalization [26]. Moreover, considering an king student generalizing a spherical teacher, 
one can study a simple example of an unrealizable mle where for sufficiently large or the 
version space is empty and the asymptotic value of the generalization error is different from 
zero @(or -+ CO) = 2.06 in this case [3]). In the present section we will investigate the 
performance of the worst student in these situations. 

Following the same line of reasoning as in section 3, we again have to determine the 
free energy (17) with the modification 

(46) 

where the trace is over all the ZN possible student coupling vectors J .  Let us first consider 
the case of a realizable rule where the teacher is an king perceptron too. In replica symmetry 
we get, instead of (23) (see appendix), 

A Engel and W Fink 

/dm(J)  + Trv, ,WR - JT)  

s RS F f ( Q , B , R )  - R G - ~ ( l - q ) f  D z l 0 g 2 ~ 0 ~ h ( f i z + G )  

The minimal training error u,&Y, R) is again given by limB,, f (or ,  p, R ) .  Similarly to 
the spherical case, there are values of or and R for which U,,,&, R)  = 0. In fact we 
can determine from (47) the entropy sRS(or,B, R) and find that its zero-temperature value 
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F b r e  8. Generalization e m r  of the worst (full line), typical (dotted line) and best (dashed line) 
king shldenl from the version space. The inset shows the ground-state entropy as a function of 
the overlap R with the teacher for 01 = 0, 0.4, 1.0, and 1.245 (from top to bottom). 

so(a, R )  = limp+m sRS(a, j3, R )  coincides with --lim#+, j3fRS(a, j3. R) .  This implies 
that the ground-state energy, i.e. um&, R) ,  is zero and so(or, R )  is thus nothing but the 
logarithm of the number of student vectors J that realize zero training error for a given 
value of R. We have plotted so(or, R )  as a function of R for different values of 01 in the inset 
of figure 8. Values of R with representatives out of the version space have SO@, R )  > 0. 
It is clear that the version space shrinks with increasing a and that for all a > 0 there is 
a gap between the point R = 1 (the teacher) and the remaining R-values in the version 
space. Hence, in contrast to the spherical case there is now also the best student in addition 
to the worst one. The reason for the fact-surprising at first sight-that one can leave the 
version space by increasing the overlap with the teacher is as follows. Owing to the discrete 
nature of the coupling vectors, the number of available students grows exponentially with 
decreasing overlap. Hence there are few students with large values of R and, although 
they are classifying most pattems as the teacher, they are likely to be eliminated by a single 
mistake on the training set  On the other hand, smaller values of the overlap are represented 
by very many different coupling vectors and, even though these perform worse individually, 
some of them can survive. If the overlap becomes ultimately too small, the growing number 
of representations cannot compensate for the degrading individual performance and one is 
leaving the veision space again. 

The behaviour of the entropy so(@, R) explains the generalization error of the typical, 
worst and best student, as shown in figure 8 (note that the overlap of the typical students 
is given by the maximum of s&, R)). Starting from 0.5, 1 and 0, respectively, at a = 0, 
the generalization errors converge to each other and meet at (Y - 1.245, where the part of 
the version space different from the teacher disappears. Here the discontinuous transition 
to perfect generalization takes place and there is no difference between the best, worst 
and typical student any more since the version space has shrunk to a single point. A 
generalization e m r  equal to zero trivially obeys any positive bound and hence no interesting 
comparison with the version space VC theorem, as in section 6, is possible here. 

To analyse a more general case where students with non-zero training errm are also 
included, one has to consider R-values for which the (replica-symmetric) ground-state 
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entropy s&. R )  is negative. As is well known 121,271, a negative entropy in a random 
system with discrete configuration space signals the breakdown of replica symmetry. In the 
present case a one-step RSB solution with 41 = 1 exists for fl  > &, where & is the inverse 
temperature at which the replica-symmetric entropy vanishes: 

A Engel and W Fink 

sRs(a,&, R )  = 0. (48) 
The low-temperature phase is completely frozen (4, = 1) and therefore one has [3,26,28] 

(49) 
Determining numerically the value &(a, R )  at which the entropy resulting from (47) 
becomes zero, we can now calculate vm&. R) and then determine RWont(a) and €(a) 
from (15). Similarly to the spherical case, we find RWom(a) e 0 and R,,(a) -+ 0 for 
a + w. The resulting behaviour of €(a) is shown in figure 9. A comparison with the v c  
theorem is somewhat ambiguous since, to our knowledge, the v c  dimension of the king 
perceptron is not known. It must clearly be smaller than, or equal to, N; a recent numerical 
study using exact enumeration techniques strongly suggests dl& = N / 2  [29]. We have 
included in figure 9 both the bound (9) corresponding to dVC = N and 

(50) 

umin(a. R )  = fRSB(q 0, R )  = fRS(a ,  &, R). 

€,s&Y) vc = J210g2a + f f f  log2 - (2 -~fcY) log(2a - f) 
resulting from dvc = N/2. Our result for €(a) is well below the values of both expressions 
and hence the bound is not tight enough to infer the actual value of dl& from i t  

Let us finally turn to the case of an unrealizable rule by considering an king student 
learning examples provided by a spherical teacher. The replica-symmetric free energy is 
now given by (see appendix) 

F 
-4) +/Dz log2cosh( f i z  +G) 

i.e. it is only slightly different from (47). The differences stem from the fact that one has to 
explicitly average over the distribution of vectors T (cf appendix). Therefore, one can now 
study the dependence of the worst-case performance on this prior distribution of concepts 
to be learned. 

from (48) and use (49). 
The results for Rwon&) and €(a) are practically identical to those obtained for the realizable 
case discussed above. Slight differences (less than 1%) appear only for small values of a 
(a e 1). Since the resulting curves are indistinguishable from those of figure 9, we did 
not plot them seperately. The worst-case performance of an king student is therefore very 
similar for a realizable rule and an unrealizable rule given by a spherical teacher. This is 
not really surprising if one takes into account that for a =- 1 the worst student has  rather 
small overlap with the teacher. The precise values of the teacher couplings are decisive for 
student vectors strongly aligned with the teacher but they are not likely to be important for 
student vectors roughly perpendicular to it. 

Interestingly, this argument holds also for the student and we will therefore speculate 
that the worst-case performance of an king student generalizing a spherical teacher should 
not be much different from that of a spherical student doing the same. In figure 10 we have 
plotted the values of RWont(a) and €(a) for both scenarios. The interesting point is that 
due to similarities with the random energy model [30, 311, there is some belief that for the 

Calculating again the corresponding entropy we determine 
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8. Summary 

The generalization performance of neural network models learning from examples can 
be characterized in different ways. Whereas investigations using statistical mechanics 
have so far been concentrating on the typical behaviour studies in mathematical statistics, 
computer sciences have often focused on the worst-case situation in order to derive uniform 
convergence bounds for the quantities of interest. In the present paper we have shown how 
one can calculate the generalization performance of the worst student perceptron learning 
a linearly seperable Boolean function provided by a teacher perceptron with the help of 
standard techniques of statistical mechanics of neural networks. The worst student is here 
defined as the one with the largest difference between training and generalization error. Our 
results describe the actual performance of the worst student in the thermodynamic limit; 
hence, they yield a crucial test for bounds on the worst-case behaviour as, for example, 
provided by the Vapnik-Chervonenkis (vc) theorem. 

We have found that for all values of the training set size a the overlap R between 
the worst student and the teacher is negative. For a + CO, R tends to zero from below. 
Moreover, the worst student never belongs to the version space formed by all students 
with zero training error. This implies that replica symmetry is always broken. In fact, the 
replica-symmetric result for the difference between the training and generalization errors of 
the worst student violates the rigorous upper bound provided by the VC theorem for large 
values of 01. The results in one-step replica symmetry breaking obey these bounds, while in 
the case of a student perceptron with couplings restricted to the values rtl (Ising student) 
they are probably exact. We have also studied the performance of the worst student out 
of the version space, i.e. the perceptron with the worst generalization ability among those 
that score perfectly on the training set Again, replica symmetry is broken. however the 
quantitative implications are insignificant and the asymptotic behaviour of the generalization 
error for large values of a remains unchanged. In the case of an Ising student there is a 
discontinuous transition to perfect generalization at a = 1.245 for both the worst and the 
typical student. Beyond this value the version space only consists of the teacher himself, 
so that the typical and worst performances become identical. 

We have found that the maximal possible difference between the learning and 
generalization errors decays asmptotically as 0.52.78/,6. If one restricts the class of 
perceptrons considered to the version space, the maximum possible generalization error 
decreases with a asymptotically as 3/(&). We thus found that the VC bounds giving 

and loga/a, respectively, overestimate the worst-case performance by logarithmic 
factors in the training set size a. This can be traced back to the replacement of the 
supremum over all perceptrons by the respective sum in the derivation of these bounds, 
which is a rather crude step in the case where the worst and the typical behaviour are not 
as dramatically different as seems to be the case in the two-perceptron scenario investigated 
here. In particular, the vc bound is not tight enough to infer from our calculations the so-far 
unknown value of the vc dimension of the king perceptron. 

The investigation of the performance of the worst student is a partial worst-case analysis 
only, since the worst teacher and the worst possible distribution of training set patterns could 
be considered as well. As a first step to include the choice of the teacher, we have also 
studied the difference between learning and generalization errors for the worst student trying 
to leam an unrealizable rule as given by an Ising student generalizing a spherical teacher. 
The results are practically identical to the realizable case where an Ising student learns from 
an Ising teacher. This is probably due to the fact that the overlap R of the worst student 
is nearly zero, whereas the weight mismatch between teacher and student is known to be 

A Engel and W Fink 
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crucial only if they are fairly aligned with each other. It would be interesting to extend 
these investigations to the case of a nonlinearly separable target rule. 
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Appendix 

In this appendix we sketch the calculation of the free energy (17) 

using standard techniques [2, 3, 241. Employing the replica trick 
((IogZ)) = lim(((Zn)) - l ) / n  

n-0 

we have to determine 

Introducing auxiliary variables up = % T C p  and using 

one can perform the average over the pattems cp. The integrand in (M)  then becomes 

If we introduce the order parameter matrix 

the ./-integrals decouple from the A-, x- ,  U- and s-integrals. Using integral representations 
for the &functions in (A4) and for the new one enforcing (As), the J integrals factorize in 
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j and the A-, x-,  U- and s-integrals in p. The s-integral can now be calculated. In this way 
one finds 
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with G(R, qob) given by (22) 

and 

G?(E', F u b , G a ) = l o g J n d J ' e x p (  - ~ ~ E a ( J a ) 2  
0 0 

In the limit N + 03, the order parameter integrals in (A6) can be found by the saddle-point 
method. The saddle-point equations for E", Fob and Ga are algebraic and these parameters 
can be expressed via R and qab. Performing this substitution, one also realizes that the 
result depends on the teacher-perceptron vector T only through xj I;2 = N .  Hence a 
separate average of f(a. p, R) over the randomly chosen teacher T is supefluous in this 
case. Having eliminated E', Fnb and G', the only remaining order parameters are the qab, 
so that one ends up with (21). 

In the replica symmetry, qab = q, a # b, and expression (A7) can be simplified as 
follows: 

1 - 4  G(q, R )  = log2imDu j n L1 2Yt x&, - uR) - 

U& I - q x z  = log2 [D U D t  [ j 2R exp(ii(A - uR) - - 
2 

- i t x m  - 
(I 

( A - U R - ~ ~ ) ~  p - 4 - A )  
2(1 - 4) OL 

where we have neglected higher-order terms in n. Substituting A --f 4. and using 
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.,,. 
, .. . one anives at (23). . A. 

In the case of the king student Jj = &I, one has to perform the replacement 

1 i 

in (AZ) and only expression (AS) for GY) is modified. It now becomes 

If also Tj = ~ & 1  (realizable rule); one can use the 'gauge' transformation J' -+ Tj J" to 
make GJ2' independent of Tj, i.e. as in the spherical case, an explicit average over the 
randomly .~ chosen teacher is superfluous. In replica symmetry one then gets 

Dz[2cosh(fiz + G)ln 

0 f i z + G  +O(n') ( ~ 1 3 )  

which together with (AS) gives (47). 
In the unrealizable case one has to explicitly average over the teacher couplings using 

P({Tj]) - SCEi q2 - N). For N + 00 this is equivalent to P([T j ) )  - exp(-xi q2/2) 
and one finds in replica symmetry 

GC2'(F, G) = 2 D z l o g 2 c o s h ( ~ z )  

Using F + G2 -+ F, the saddle-point equkon for G becomes algebraic, G = R/(1 -  4). 
after eliminating G, one is left with (51). 
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