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Abstract, Using the replica technique we calculate the maximal possible difference between
the learning and the generalization error of a perceptron learning a linearly separable Boolean
classification from examples. We consider both spherical and Ising constraints on the couplings
of the perceptron, investigale learnable as well as unleamable problems and stady the special
situation where the class of perceptrons considered is restricted to the version space. The results
are compared with the Vapnik-Chervonenkis bound and variants thereof. We find that these
bounds are asympiotically tight within logarithmic corrections.

1. Iptroduction

Learning tasks of information processing such as recognition, classification and
categorization from examples is a far reaching concept of general interest. In recent years
statistical physics has contributed to the understanding of general features of this problem
by analysing model situations which, on the one hand, are complex enough to show some
of the generic aspects of the problem and, on the other hand, are simple enough to allow
a mathematical treatment. A particularly suitable scenario in this respect is given by a
‘student’ perceptron trained to classify input patterns on the basis of examples provided by
a ‘teacher” perceptron [1, 2]. A perceptron is the simplest feed-forward network consisting
of N input units §;, j = 1,..., N, and one output unit Sy connected to the inputs by
real-valued couplings J; (see ﬁgure 1). We will only consider binary umts §; = +1. For
any input {S;}, the perceptron determines the output according to

S =sign(ﬁ24-s,) _— 0
i

thereby providing a binary classification of all 2V possible input patterns {S;}. Let us assume
that one particular classification is fixed by a teacher or target perceptron T' = {T}}. The
aim for the student perceptron J = {J;} is either to reproduce or, if this is impossible due
to different restrictions on the vectors 7" and J, to approximate this target classification as
faithfully as possible. The simplest procedure would of course be to set J; = T; for all
Jj=1,..., N, corresponding in a sense to explicit programming. More interesting, however,
is the situation where the individual values T; of the teacher. couplings are not accessible to
the student (figure 1). The classification £+ of special patterng £# = {’g‘}‘}, w=1,...,p,
by the teacher is known instead and the student is expected to infer the complete rule T°
from these examples. The patterns £ together with their classification ¢¥ by the teacher
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Figure 1. Setup of the two-perceptron scenario: A student perceptron J ftries to learn the

binary classification defined by the teacher perceptron I' on the basis of input-output examples
provided by the teacher.

form the so-called training set. The general strategy of the student will be to modify the
coupling vector J in order to produce nearly the same classification of the patterns of the
training set as the teacher. The hope is that for a sufficiently large training set this will result
in an alignment of the vectors T" and J which would imply that the student also classifies
a pattern not contained in the training set similar to the teacher, Le. that he will generalize
from the examples to the rule. If the patterns of the training set are independently drawn
at random from the set of all possible patterns according to some probability distribution
P(&H) the quantities of central interest are the training error v,(p) and the generalization
error ¢;. The training error v;(p) denotes the fraction of patterns of the training set which
the student classifies differently from the teacher. The generalization error is the probability
that an arbitrary pattern drawn at random with the same probability distribution P (which
therefore may or may not belong to the training set) is classified differently by teacher and
student. The aim is to make this generalization error as small as possible,

Using methods of statistical mechanics of neural networks, the leamning and
generalization error have been determined for various combinations of learning rules, patiern
statistics and network architectures in the limit N — oo, p — ©0,& = p/N = constant
[3-5]. In this Jimit the fluctuations in the performance due to the random nature of most of
the learning rules used are suppressed and one ends up with fypical results for the Iearning
and generalization errors. This means that for one particular realization of both the patterns
in the training set and the learning schedule one finds with probability 1 the values of the
statistical mechanics analysis for v,(p) and e;.

Besides these rather recent studies in statistical physics there is, however, a much
longer line of investigations of the same problem in mathematical statistics which so far
has remained fairly unrelated to the work of the statistical mechanics community. From
the point of view of mathematical statistics, the generalization is just a variant of the
general problem of convergence of frequencies to probabilities: the learning error is the
frequency of mistakes of the student on a test set, whereas the generalization error denotes
the corresponding probability. For finite N, one has clearly v,(p) — ey for p — oco. If
one were able to characterize the fluctuations of v,;(p) around e, for finite p it would be
possible to give estimates of e; on the basis of v,(p). Since learning rules are designed to

make v;(p) very small (ideally zero), the decrease of e; with the size p of the training set
could be quantified.
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In fact, it is easy to describe the fluctuations of v;{p) around its limit e; for a fixed
student vector J. Since J and the patterns of the test set are uncorrelated, v;(p) obeys a
Bernoulli distribution and we have by virtue of the Hoeffding inequality [6]

Prob{|v;(p) — ;| > €} < 8(e, p) = 2e727, (2)

- Hence, the probability that v;(p) deviates from e; by an amount ¢ is bounded by 8(e, p).
Note that a constant bound corresponds to € ~ 1/,/p, as is familiar from the central limit
theorem. The occurence of two parameters, the tolerated error ¢ and the confidence 3,
in eguation {2) is the trademark of the concepi of probably approximately correct (PAC)
learning [7] frequently studied in computational science approaches.

The Hoeffding inequality, however, is not sufficient to describe the generalization
problem. The reason is that the student vectors J of interest are chosen in order to make
vs(p) small and in particular are modified if new patterns are added to the training set. This
gives rise to strong correlation between the J’s and the £#°s; in fact, these comelations are
the central aim of learning. In this way the test set really becomes a training set and it is
impossible 10 apply the Hoeffding inequality.

A way to characterize the convergence of the training error to the generalization error is
to find a bound for the difference between them, which is uniform on the set of all possible
students (e.g. all perceptrons with real-valued conpling vector J). Such a bound is naturally
given by a bound for the maximal possible difference

max [v;(p) — es ' @)

between v;(p) and ¢;. Estimating this maximum is often refered to as worst-case analysis.
In a by pow classical study, Vapnik and Chervonenkis have derived such a uniform bound
of the form [B]

Prob{max v;(p) — es] > €} <87, p). 4

By definition, this bound applies to all possible student vectors J, in particular to those
designed on the basis of the training set £¢. Hence, knowing the behaviour of vs(p)} for
some particular learning rule, one ¢an deduce bounds for the corresponding generalization
error. If, for example, the learning rule achieves v;(p) = 0 for all p, the probability that
the generalization error will exceed some small parameter ¢ decreases as 5¥C(e, p).

Due to its generality, the Vapnik-Chervonenkis (vC) theorem is central in the
mathematical theory of learning from examples and has been applied to several interesting
situations [9-11]. There have also been several refinements since its originat derivation [12].
A very nice introduction into the subject of uniform convergence bounds for physicists is

provided by T13].
: In the present paper we make coniact between the investigations of the generalization
problem in the mathematical statistics and statistical mechanics community, respectively,
by testing the vC bound against the actual performance of the worst student under several
circumstances. Note that this is a partial worst-case scenario only, whereas the VC theorem
also holds for the worst possible choice of the teacher T and of the distribution P(£€#) of
the patterns forming the training set [14], Our results will on the one hand highlight the
tightness of the vC bounds in this case and on the other hand quantify the difference in
performance between the worst and the typical student. This will also indicate, therefore,
at least for the perceptron, whether a worst-case analysis is really too pessimistic, as is
frequently claimed. We first discuss in section 2 the form of the vC theorem for perceptrons
in the statistical mecharics limit ¥ — oo, where we mainly follow {13]. Then we show
in section 3 how one can calculate the performance of the worst student (instead of that
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of the typical one) wsing methods of statistical mechanics. Sections 4 and 5 contain the
corresponding replica calculation, where details are relegated to the appendix. In section 6
we discuss the special case that all student vectors belong to the version space, ie. they
perform on the training set exactly like the teacher. Section 7 is dévoted to student vectors
restricted to the hypercube, J; = £1. Here we also discuss the situation of an unrealizable
rule, in which no student J with v;(p} = 0 for sufficiently large p exists. This can be
viewed as a first step towards a worst-case analysis including the choice of the teacher.
Finally, section 8 contains our conclusions. Part of the results of sections 46 have already
been reported in a recent letter [15].

2. vC bound for large perceptrons

The vC theorem provides a uniform bound for the convergence of the leaming error v;{p)
to the generalization error e; for a whole class P of classifiers J according to [8]:

Prob {rpgg vs(p) —es| > e] < cA@p)e e, (5)

Here A(m) is the so-called growth function defined as the maximal possible number of
different classifications of m patterns that can be induced by classifiers of class 7, and ¢
is a constant slightly larger than 6. The bound is uniform on 7 since it refers to the worst
possible choice of J € P. Hence, it applies in particular to the J’s of interest, namely those
that were designed on the basis of the training set to produce small values of the learning
error vs{p). The vC bound (5) is of little use if A(m) always grow exponentially with m.
On the other hand, considering simple examples, one easily realizes that for small m the
behaviour A(m) = 2™ is rather typical. The strength of the vC theorem lies in the fact that
for any class of classifiers P there exists an integer number 4¥C (which may be infinite)
called the vC dimension of this class such that [8, 16]

=m if m<d'© ¢
< T ™ if  mzdC ©

Hence, for p > d'°, A(Zp) grows only as a2 power of p and the bound (5) becomes
effective. In the present paper we deal with perceptrons specified by a vector J € IR in
the thermodynamic limit N — o0, p = 00, @ = p/N = constant. For perceptrons without
threshold the vC dimension is known to be d¥C = N; moreover, for p > N the exact result
Alm) = 22,.;6' (”'i'l) holds [17]). Using the Stirling formula, replacing the sum by an
integral and using peak integration, we then get for N - coand & 2> 1

A(m) {

AQueNY = 22 (Z‘IN 1) ~ exp {N[2a log(2a) — (20 — 1) log(2e — 1)]} N
i=0

which, when combined with (5), yields
Prob[ I}}g%(!v;(p) —ey| > e] < ¢ exp { N2 log(2e) — (22 — 1) log(2e — 1) — a€]} . (8)

For N — oc this means that max ep [v;(p) — ;] is bounded by a threshold
e¥C(a) = 2log20 — (2 — 1/e) log(2a — 1) )
with probability 1. Note that €VC(a) ~ ,/log(e)/er for large . .

It is this bound €VC(x) for the maximal difference between leaming and generalization

error for the class of large perceptrons which we would like to test, in what follows, against
the actua! performance of the worst student. Let us finally note that for perceptrons one
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has v_;{(p) = ! —v;(p) and ¢_; = 1 — ¢y . Hence if the maximum of (v;(p) — e;) is
realized for a perceptron J* then the minimum of (v;(p) — ;) is realized for —J* and
max(v;(p) —es) = —min(v;(p) — es) = max [v;{p) —e;l. Itis therefore possible to drop
the absolute value. As one usually minimizes v;(p) on the training set in order to get low
values for e; as well, we will refer to the perceptron maximizing (e; -v;(p)) as the worst
student,

3. Worst-case analysis using statistical mechanics
Our aim in this section is to calculate explicitly
¢(@) = max(es — vs (@) (10)

as a function of the training set size & and to compare it with the threshold €Y¢(x) resulting
from the vC theorem. Note that the asymptotic form (8) of the vC bound suggests that e{er)
is self~averaging for N — co.

It is well known that in the situation of a student perceptron J generalizing a teacher
perceptron T', where both teacher and student obey the spherical normalization

=3 T}=J"=N : 11
i
the generalization error ¢; depends on J only through the variable
1 1 :
=NT-J:=-EJZI}J:,- (12)
according to [18, 19]
1 ' .
ey =—cos"' R. (13)
T

It is therefore convenient to split the calculation of max,(e; — vs{e)) into two steps. First
we determine the minimal possible training error vy (2, R) of a perceptron J with overlap
R with the teacher T". Then the maximal possible value ¢(o, R) of (g; — v,()) for these
J’s is given by

1
e(a, R) = -ﬂ-:—cos" R — vpnler, R). (14)

In the second step we maximize with respect to R to get
e(a) = maxe(a R). (15)

To determine vy (e, R), we introduce the {extensive) eneigy E(J, o) of a perceptron J

according to
E(J, @) = Nvsla) = Ze( (——-J 5#) (LT.gﬂ)) (16)
' N

and calcnlate the free energy density

1
= — Fim —— ~BE(T )
fle, B, Ry = ‘ngnm 5N((10g[dm(=7) e )) (17)
where the average is taken over the statistics of the patierns £, o =1, ..., p, forming the
training set according to

P&y = [T [L8¢ — 1)+ 38" + 1] (18)

L
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and
dpa(Ty =[Td% 8N = IJHSWNR—T - T) (19)

incorporates the constraints (11) and (12). For large values of g the free energy is dorninated
by J vectors with small energies. Accordingly

Vain (&, R) = ,g]i"éo fla, B, R). (20)

The calculation of f(a, 8, R) can be done using the replica trick and standard techniques
from the statistical mechanics of neural networks [2, 19,20]. Some of the intermediate steps
are sketched in the appendix. The result is

fla, 8. Ry = ——min [im [iﬁ (1+ log2m)

L ab o ab_ p2ya & ab
+ ‘3 Trlog(6® + g R)+ﬁnG'(R,q )] (21)

where the minimum is over the n(n — 1)/2 order parameters ¢°® = ¢%, a % b and
o
L dhgdx
b a Uig .
GR, ¢ = logZ.[Duf!:[l -—2—n—-~exp {1Za:xa(la —uR)
Zx -3 I e+ & Zxaxb Bla Ze( Aa)} @2)

{a,b)

with Du 1= (du/+/2m)e~*"/2. The crucial step in the replica calculation is to find the
correct minimum with respect to the n x » order parameter matrix ¢ in equation (21) in
the limit » — 0. This can only be accomplished using special ansitze for the structure of

the matrix ¢°. The simplest one is that of replica symmetry, to which we turn in the next
section.

4. Replica symmetry

The replica-symmetric ansatz for the order parameter matrix ¢®” is of the form ¢%* = ¢,

a 5= b. It is then possible 1o simplify considerably the expression for the free energy
(21}, (22) with the result (see appendix)

T 9-R
flee, B, R) mm[ ﬁ(1+log2ﬂ)+ ﬁlog(l q)+2ﬂ(1 —_
- --,GV(?\J
+ thH( _Rz) f Z__Jr(l- ] 23)
where
2
voy= &t ‘/_ D1 am @4

Hx) = j;°°Dt and x := )3(1 — g¢). In order to find vpn(er, R) we have to take the limit
B — oo. Then the A-integral is dominated by the minimum V(Ag) of V(1) and we find

P2
min(a, R = -mm [1 2xR ~2ath H (—%) V(Ao)]. (25)
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Using
Aot = —t Virg) =0 it 0<t
Ap(r) =0 V(rg) = £2/2x if —/2xfe<t<0 (26)
Ao(t) = —t Viho) = 1jr if ¢ <—Ixja
we Gnally get
1—-R? 1 vE at? Rt
Vi@, B) = — mxln[ = " cos 'R+ f Dt(2 - T)H(ﬁ)] @7
0
The value of x minimizing the RHS of (27) is given by the solution of
1-R?  « vE 5 Rt
0= ——p+5 fmr H(ﬁ). (28)

Obviously x = co corresponding to v,ﬁ?n(a, R) =0 is always a solution of (28). However
for R < Rpin(e) there is another solution x < oo giving rise to a negative value of the
square bracket in (27). The result for v, (z, R) is then

JE

1 _ " Rt
Vminler, R) = ;COS_l R~2 th H (ﬁi) > 0. (29)
0

Rmin is given by the (smalfer) solution of

~/1—R?

The interpretation of these results is as follows. Due to the spherical constraint (11), all
possibie student vectors J lie on the-surface of an N-dimensional sphere with radius +/N.
Let us take 1" as the north pole of this sphere. For every value of ¢ there is a subset of the
sphere, called the version space V, containing all student vectors J that classify all training
examples exactly like the teacher. If part of the rim defined by J - T = NR belongs to
this subset we obviously get vpn(c, R) = Q. Since by definition the teacher ' belongs to
the version space but the vector T' does not, there must be a critical value Rum(er) of R
such that for R < Rupin no student J out of the version space with J - T = NR exists
and accordingly vipin(e, R) > 0. Hence, Ry as given by (30) marks the ‘most southern
tip” of the version space formed by the student with still zero training error but the worst
generalization ability. Rpp(er) is plotted in figure 2. Note that Ry = 0) = —1 and
Run{o = 00) = 1, in accordance with intuition. Moreover, Rpn(o = 2) = 0. A student
vector J confined to the plane perpendicular to the teacher cannot take advantage of the
correlations between input and output induced by the teacher and hence has to learn random
classifications. This becomes impossible beyond the Gardner threshold ¢ = 2 and hence
Rupin =0fora =2.

In figure 3, v&3 (@, R) is plotted as a function of R for three different values of o, For
R > Ruin(e) one has V2 (o, R) = 0. At Rya(e), vmin becomes positive and tends to 1
for R — —1 for all o

o0
Rt
1—-R: =af Dti2H (——-—) =g—(cos“R—R\/1—-R2). A (30)
) ,
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Figure 2. Minimal possible overlap Kmin of 2 student vector J still belonging to the version
space (top) and overlap Ry of the student vector that realizes the largest difference between
training and generalization error (bottom) as a function of « it replica symmetry (full lines) and
one-step replica symmetry breaking (dotted lines).
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nu

Figure 3. Minimal possible training error vmin(er, R) as a function of the overlap R with the
teacher for ¢ = J, ¢ = 1.5 and a = 0.5 (from top to bottom),

From (15), (14) and (29) we finally get the maximal possible difference €(o, R) between
the training and generalization error for a given R in replica symmetry

VEF
S, R)=1 2 { DtH (m—R_‘ﬂ‘ if -1<R< Run (31
Lcos™' R if Ran<R<1

where x is given by the finite solution of equation (28). Figure 4 shows a plot of eRS(x, R)
as a function of R for the three values of & in figure 3. For every value of o there is a
unique maximum €RS(e) of e*S(e, R) with respect to R. Moreover, since v /R = 0
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for R = Ruin, as follows from (29), this maximum lies always outside the version space,
i.e. for a value Ry of B with usﬁsn(a, R) > 0. We have included Ry () in figure 2.

Note that contrary 10 Ruyin{e), Ruworst{et) is always negative and tends to 0 for @ — oo.
This can also be anticipated from figure 4.

1 T T T T T T — T

0.8 = ' B

epsilon

Figure 4. Maximal possible difference between the gcneralizaﬁorn and training ervor as a function
of R for the same values of & as in figure 3 (now from bottom to top).

£ s T T T T

q9.8

epgilon

) Il K. 1 L

9 2q 40 60 30 100
alpha R

Figure 5. Maximal possibie difference between generalization and training error as a funciion
of the training set size « in replica symmetry (full line) and one-step replica symmetry breaking
{dashed line). The dotted line is the rgourous upper bound provided by the vc theorem.

The resulting behaviour of €*%(c) is shown in figure 5 together with the vc bound (9).
As can be seen, the replica-symmetric result is well below the rigorous upper bound provided
by the vC theorem for the values of ¢ shown. On the other hand, solving the extremum
equations for x and R asymptotically for « — co one finds x ~e'/?, R ~o~'/% — 0 and
3 (w) ~ 0781/, This, however, violates the vC bound for large o (in fact, the respective
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curves of figure 5 cross at & = 4500) and, hence, the replica-symmetric calculation must
be wrong, at least for large «. In fact, testing the local stability of the replica-symmetric
saddie point [19, 21], we find local instability for & > eay, where o,y is the solution of

ERS (aA'I‘) = L (32)
oAT

yielding arar & 1.70. This instability should not come as a surprise since the maximum of
B8, R) with respect to R is always realized at a point with vpip(e, R) > 0. However,
as we know from the theory of storing random classifications, a replica symmetry (with the
cost function used here) is broken whenever perfect storage becomes impossible {22, 23],
One may therefore suspect that the replica-symmetric solution is wrong even below aar. To
clarify these points we investigate, in the next section, ¢(x) in one-step replica symmetry
breaking.

5. Replica symmeiry breaking

In order to obtain refined results for ¢ > aar and to test the global stability of replica
symmetry, we calculate e(ce) in this section using the ansatz of one-step replica symmetry
breaking for the order parameter matrix g%2. This ansatz is defined by the three parameters
go,q1 > qo and m according to ¢°% = 0, ¢°% = q, if |e — b] < m, otherwise g*t = go.
Plugging this into equation (21) we find after some algebra

e mm L Q=R mol_
flo, B, R) = mm { JB(l+log27r)-{-zﬁ(l__ql_|_mAq)+ 2 log(l —g1)
Rty

2,3 —log(l — q1+m/}.q)+ fDroH( \/Eu_—_Rz)

1 —_— —BV 33

Xongt1 [[mexp( B (l))] ] (33)
where now

2
Vo) = (l+toﬁ3+t:f—) 4 9(1) G4)

x=8(1—q)and Ag =¢q1 — qo. A non-trivial 11m1t of f(a, 8, R) for B — oo results if
x=0() and m - 0 with Bm i=cx = 0(1) We then get

qo ~ R?
S8, B) = - min [2x = _qo)) 5 log(1 +¢(1 — 40)
— f D H ( )iog D# exp(—ch(lo))] (35)
Vo — B2

where V (Ag) again denotes the minimum of V(A). We have performed the three-dimensional
minimization in eguation (35) numerically and used the result of a numerical determination
of maxg (L cos™ R — 1B (, R)) to get the curve e®5B(cr) which is included in figure 5.
As can be seen, e®5B(q) < *S(a) for all a, as should be expected. Moreover, the replica
symmetry broken solution exists also for @ < axr so that the replica-symmetric solution,
though locally stable, is incorrect. For @ < 1, ¢p is very near to unity and it is difficult to
distinguish numericaily between the replica-symmetric solution and the one using one-step
replica symmetry breaking. Nevertheless we expect from our experience with the problem
of storing random classifications [22, 23] that for all & > O there is a one-step RSB solution
giving smaller values for e(x) than the corresponding replica-symmetric result. Hence for
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the problem at hand the RS solution must be rejected everywhere, although it gives a very
good approximation for e{a) if & < 1. As stated already in the last section, the reason for
this is that the maximum of € (x, R) always lies outside the version space (though very near
to it for small o, see figure 4). The presence of errors, however, makes the solution space
disconnected and this implies the breaking of replica symmetry.

Finally it is important to see how the asymptotic behaviour of e(g) for @ = oo is
modified by replica symmetry breaking. The resuits of the numerical minimization suggest
exfa = 0 and ¢(1 — g) -» oo for o —> oo, Using these ansiitze we find, to leading order,

: 2
¢*Be) = extm,q,,,c.m[zjc (l‘fl‘f C(IR_ i 5%; fog(1+ ¢(1 — go))
T '\/5 cx {1 —go 2 /x 2x R
4 o g0 3Var  ax /1—RZ :l

From this one gets the self-consistent saddle point x ~ 9/4{loga)™/2, (I — go) ~
3/2(oga)~", ¢ ~ 47 /9 /a(loga)®* and R = —9/ /e~ *(loga) ™"/, yielding

1/4
opleg™
Ja

It is reassuring that, contrary to the replica-symmetric result, €**5(r) remains below the
vC bound ¢¥C(a) ~ /loga/o for large . On the other hand, it is difficult to estimate
whether e®B(a) indeed characterizes the performance of the worst student or if there
are substantial corrections due to higher-order breakings of replica symmetry. In fact, the
asymptotic result go — [ for @ — cc suggests that one-step replica symmetry breaking
is not sufficient, since we expect the smallest overlap scale (g{x = 0) in the full replica
symmetry breaking scheme of Parisi} to tend to zero for @ — oo (see also section 7).

(36)

efSBla) ~1 37

6. Restriction to the version space

For any value of o there is a non-empty set of perceptrons producing exactly the same
output for all patterns of the training set as the teacher, A simple but efficient learning rule
consists of choosing the student vector J at random from this set, the so-called version
space V. Both the vC theorem and the statistical mechanics analysis are special in this case.
The convergence of frequencies to probabilities is much faster if the frequencies are close
to zero. This allows us to improve the vC bound. By definition, one now has v;(e) = 0
and therefore the vC bound is a bound for the generalization error ¢y itself. The result is
[10, I1]

: Prob[ maxe; > e} < 4AQ2p)2P* (38)
€

to be compared with (3). The convergence with p is now much faster, since we have
€ ~ 1/p instead of € ~ 1/./p. For p = aN and N — o we find for @ > 1 by analogy
1o (8) the new threshold [13]

e]'}fc(a) = [2log2a — (2 —1/a) log(Re — 1)](log2) ™! 39
which implies for large o -
loge

@) ~ alog2’

(40)
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For the statistical mechanics analysis, we have to determine the largest generalization error
of a vector J still belonging to the version space V. In replica symmetry it is given by

I _
egs(af) = r_r,leal:;ce_; = po cos™ Ruin 41)

where Rpyin marks, as explained in section 4, the ‘southernmost tip® of the version space
and is given by equation (30). The resulting behaviour of €5>(e) is shown in figure 6
together with the vC bound. Again, statistical mechanics gives a result that is well below
the rigorous upper bound provided by the vc theorem for the a-values shown. Solving (30)
for ¢ — co one finds Rpin ~ 1 — 972%/8a?, implying €5°(e) ~ 3/(2a), so that in the
present case the RS result remains below the upper bound for gl values of o,

1 ; T T T

0.8
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sttt #iinbi o Blfadi v o
& amam

60 80 160
alpha

Figure 6. Generalization error as a function of « for the worst (full line) and typical (dashed
line) student out of the version space. The dotted line is the rigorous upper bound provided by
a variant of the v¢ theorem for this situation.

The version space is known to be convex and it is therefore tempting to assume that
replica symmetry holds for all values of @. However, in order for RS to hold, it is
not the version space itself which must be connected but the part of the rims given by
NR=Y ; J;T; that belong to it. In figure 7 we have shown schematically for two values
of R which part of the respective rims are cut if the first patiern is learnt. Furthermore, it
is shown on the right-hand side that for R < 0 two patterns will always leave a connected
part of the rim in the version space, whereas for R > § it is possible that iwo patterns cut
the rim in disconnected pieces belonging to V. Hence, for R > 0 we would expect that
replica symmetry is broken.

We have tested the local stability of the RS solution with the result that it becomes
locally unstable for ¢ > aap with aar again given by (32). In the present case this gives
car = 2. Since Rpin(e = 2) = 0, this is in perfect agreement with the geometric argnment
above. To our knowledge, this is the first case where one can verify by an independent
geometric argument that replica symmetry breaks down when the solution space splits into
disconnected pieces.

In order to quantify the implications of RSB for & > 2 we have investigated the solution
with one-step RSB. The determination of Rp{) in section 4 is not easily generalized to
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Figure 7. Three-dimensional sketch of the student space. Two rings corresponding to a fixed
overlap R with the teacher T are shown. If a pattern S is added to the training set, the
hyperplane perpendicular to it cuts that part of the rings which is not compatible with the
weacher classification {left). Two patterns always leave a connected part of the ring if R < 0.
For R = 0, however, it is possible that the part of the ring belonging to the version space is
disconnected. This gives rise to replica symmetry breaking for R > 0 {right).

replica symmetry breaking. It is more convenient to use a different but equivaient approach.}
To this end one calculates the typical value of the fractional volume V{R, o) of the part of
a rim corresponding to R that belongs to the version space:

B 1 B 5 . eN 1 ) ]
VR,@) = oo [ 0T8N - DR - 1D [[o( 5069 @-69) @

p=1

where the total volume of the rim for large N is given by
V(R,0) = exp (3N[1 +log2m + log(1 — RH)]). (43)
For given R, V{(R,a) is a monotonously decreasing function of o and there is a
threshoid value @max(R) such that V(R, @max(R)) = 0, much like in the original Gardner
calculation [24]. o (R) is the inverse function of Rpyip(). Calculating Viyp(R, o) =
exp({{Jog V(R, «)}}) using the replica trick and replica symmetry, it is easy to find back
equation (30) for Rpn(er). Using the ansatz of one-step replica symmetry breaking as given

in section 5 and introducing the same scaled parameters as introduced there, one gets after
some algebra

clg — R*}/[1 +c(1 — @)1} + log(l +¢(1 ~ @)
4g(g,c, R)

Cmax(R) = n;‘gl ["{ ] (44)

where the function g(g, ¢, R) is given by

0= for8{ ) m[n(5) i

B cqt? ~J3t ]
“""( 2(1+c(1~q))> H(Jl—q¢1+c(1~q)) ' @

Performing the minimization in (44) numerically, one finds that the RSB solution branches
off continuously from the RS solution at o = oar = 2. Moreover, the difference between
the two results is very small, at most (% at ¢ = 5.1 (cf figure 2). Hence, RS gives a
very accurate approximation for Ryin{er) and ey(a) for all values of @, Most importantly,
the asymptotic behaviour for large o is not modified by RSB, The results of the numerical
minimization in equation (44) suggest c(I — g) — oo and c(1 — g)> ~» 0'for ¢ — o0

T We thank Marc Bouten for pointing this out to us.
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from which one can obtain the asymptotic behaviour of g{(g, ¢, R) and finally e (R) in
a self-consistent way, again with the result ey(e) ~ 3/(2e). Since usually the first step of
replica symmetry breaking gives the largest correction of the RS result it seems very unlikely
that higher-order breakings of replica symmetry will modify this asymptotic behaviour.

In figure 6 we have also included the generalization error et.j"’ () of the typical student
out of the version space as determined in [2]. The comresponding asymptotic behaviour
is eg”(a) ~ 0.625/a, to be compared with ep(e) ~ 3/20 for the worst student. We
thus find that there is only a factor of 2.4 between the performance of the typical and the
worst student. The loga: in the VC bound €,/ ~ loge/(a log2) stems from replacing the
maximum of e; by the respective sum. This is a rather crude upper bound if all terms are
of comparable magnitude as in the present case. In the situation where the students are
restricted to the version space, the vC bound is therefore not tight but overestimates the
generalization error of the worst student (asymptotically) by a factor of 2loger/(310g2).

It is possible, however, to improve the VC bound by using inequalities from information
theory [14, 25] (see also [5]). One then finds that, irrespective of the distribution of patterns
forming the training set, the generalization error of a student vector drawn at random from
the version space is asympiotically bounded by 2/x. Our result, ep{e) ~ 3/2¢, shows that
this is indeed an excellent bound and that the generalization performance cannot deteriorate
significantly if one uses probability distributions other than (18} for the patterns £,

7. Ising student

Some new aspects of the generalization problem can be studied within the simple scenario
of two perceptrons if the coupling vectors J and T have to obey additional restrictions
besides the spherical constraint (11). A simple example is the so-called Ising perceptron
where the couplings are binary J; = &1. The generalization behaviour of the typical
Ising student is known to be drastically different from the spherical case: at ¢, = 1.245 a
discontinuous (first-order) transition occurs from rather poor {e ~ 0.26) to perfect (¢ = 0)
generalization [26]. Moreover, considering an Ising student generalizing a spherical teacher,
one can study a simple example of an unrealizable rule where for sufficiently large o the
version space is empty and the asymptotic value of the generalization error is different from
zero {e(w — o0) = 2.06 in this case [3]). In the present section we will investigate the
performance of the worst student in these situations.

Following the same line of reasoning as in section 3, we again have to determine the
free energy (17) with the modification

f dpr(J) = Try8(NR — JT) (46)

where the trace is over all the 2V possible student coupling vectors J. Let us first consider
the case of a realizable rule where the teacher is an Ising perceptron too. In replica symmetry
we get, instead of (23) (see appendix),

R, 8, R = —éextl’q'}:“g[—RG - g(l -g)+ szlochosh (vFz+G)

R: _ _ Jat
—_— Bl _ a—Ble i
+2“fD’H(m)l°g[e A -eTOH (JT:E)]] 47

The minimal training error vmin(e, R) is again given by limg.,c f(e, 8, R). Similarly to
the spherical case, there are values of & and R for which vp(e, R) = 0. In fact we
can determine from (47) the entropy s*°(, 8, R) and find that its zero-temperature value
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Figure 8. Generalization error of the worst (full line), typical {(dotted line) and best (dashed line)
Ising student from the version space. The inset shows the ground-state entropy as a function of
the overlap R with the teacher for ¢ = 0, 0.4, 1.0, and 1.245 {from top to bottomn).

sola, B) = limgo0 s*S(ax, B, R) coincides with — limg_, o0 Bf% (e, 8, R). This implies
that the ground-state energy, i.e. wmin(e, R), is zero and sg(w, R} is thus nothing but the
Jogarithm of the number of student vectors J that realize zero training error for a given
value of R. We have plotted sp(er, R) as a function of R for different values of « in the inset
of figure 8. Values of R with representatives out of the version space have so(a, R) > 0.
It is clear that the version space shrinks with increasing ¢ and that for all ¢ > O there is
a gap between the point R = 1 (the teacher) and the remaining R-values in the version
space. Hence, in contrast to the spherical case there is now also the best student in addition
to the worst one. The reason for the fact—surprising at first sight—that one can leave the
version space by increasing the overlap with the teacher is as follows. Owing to the discrete
nature of the coupling vectors, the number of available students grows exponentially with
decreasing overlap. Hence there are few students with large values of R and, although
they are classifying most patterns as the teacher, they are likely to be eliminated by a single
mistake on the training set. On the other hand, smaller values of the overlap are represented
by very many different coupling vectors and, even though these perform worse individually,
some of them can survive. If the overlap becomes ultimately too small, the growing number
of representations cannot compensate for the degrading individual performance and one is
leaving the version space again.

The behaviour of the entropy so(x, R} explains the generalization error of the typical,
worst and best student, as shown in figure 8 (note that the overlap of the typical students
is given by the maximum of sp(e, R)). Starting from 0.5, 1 and 0, respectively, at & = 0,
the generalization errors converge to each other and meet at @ ~ 1.245, where the part of
the version space different from the teacher disappears. Here the discontinuous transition
to perfect generalization takes place and there is no difference between the best, worst
and typical student any more since the version space has shrunk to a single point. A
generalization error equal to zero trivially obeys any positive bound and hence no interesting
comparison with the version space vC theorem, as in section 6, is possible here.

To analyse a more general case where students with non-zero training error are also
included, one has to consider R-values for which the (replica-symmetric) ground-state
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entropy soet, R) is negative. As is well known [21, 27], a negative entropy in a random
system with discrete configuration space signals the breakdown of replica symmetry. In the
present case a one-step RSB solution with g, = 1 exists for § = #;, where f; is the inverse
temperature at which the replica-symmetric entropy vanishes:

™S(a, By, R) = 0. 48)
The low-temperature phase is completely frozen (g; = 1) and therefore one has [3, 26, 28]
Vain(e, R) = f2%%(2, 0, R) = fS(a, B, B). (49)

Determining numerically the value Bg(a, R) at which the entropy resulting from (47)
becomes zero, we can now calculate vy, R) and then determine Rygm() and e{o)
from (15). Similarly to the spherical case, we find Ryem(e) < 0 and Ryem() — 0 for
o« — 00. The resulting behaviour of e(&) is shown in figure 9. A comparison with the vC
theorem is somewhat ambiguous since, to our knowledge, the vC dimension of the Ising
perceptron is not known. It must clearly be smaller than, or equal to, N; a recent numerical
study using exact enumeration techniques strongly suggests d,‘s'gg = N/2 [29]. We have

included in figure 9 both the bound (9) corresponding to d¥¢ = N and

el‘;ﬁg(a) = \/2 log2a + %Gﬂ log2 — (2 —"12‘(1) log(2a — % (50)

resulting from dVC = N/2. Our result for e(a) is well below the values of both expressions
and hence the bound is not tight enough to infer the actual value of dgﬁg from it
Let us finally turn to the case of an unrealizable rule by considering an Ising student

learning examples provided by a spherical teacher. The replica-symmetric free energy is
now given by (see appendix)

RZ

1
fle, B, R) = ——exir, ¢ [_2_(1—_4:])

B

+2athH

-g(l --q)+szlog2cosh(ﬁz+G)

Rt _ _ JGt )]
—_— . |1 Ble —a— Bl v 51
(1/—“‘q_gz) op &7+t —epoyn ( } eb
i.e, it is only slightly different from (47). The differences stem from the fact that one has to
explicitly average over the distribution of vectors T (cf appendix). Therefore, one can now
study the dependence of the worsi-case performance on this prior distribution of concepts

to be leamned.

Calculating again the corresponding eniropy we determine 8, from (48) and use {49).
The results for Ry () and e (o) are practically identical to those obtained for the realizable
case discussed above. Slight differences (less than 1%) appear only for small values of &
(@ < 1). Since the resulting curves are indistinguishable from those of figure 9, we did
not plot them seperately. The worst-case performance of an Ising student is therefore very
similar for a realizable rule and an unrealizable rule given by a spherical teacher. This is
not really surprising if one takes into account that for & > 1 the worst student has rather
small overlap with the teacher. The precise values of the teacher couplings are decisive for
student vectors strongly aligned with the teacher but they are not likely to be important for
student vectors roughly perpendicular to it.

Interestingly, this argument holds also for the student and we will therefore speculate
that the worst-case performance of an Ising student generalizing a spherical teacher should
not be much different from that of a spherical student doing the same. In figure 10 we have
plotted the values of Ryot(er) and e{er) for both scenarios. The interesting point is that
due to similarities with the random energy model [30, 31], there is some belief that for the
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Figure 9. Maximal possible difference between generalization and training error as a function
of the training set size o« for an Ising student generalizing an Ising teacher. The dashed line is
the ve bound corresponding to di., = N, the dotted line corresponds to difine = N/2.
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Figure 10. Maximal possible difference between generalization and training error {top), and
overlap of the worst student with the teacher {botiom), as calculated from the statistical mechanics
approach for a spherical student in replica symmetry (dotted lines), for one-step replica symmetry

case of an Ising student the solution in one-step RSB is exact [28, 32]. The results of this
section obtained on the basis of equation (47) are therefore probably the best estimates for
the worst-case performance in the two-perceptron scenario that one can get using statistical
mechanics. From figure 10 one infers that the expected modifications from higher-order
RSB for the spherical case are quite substantial. In fact, for « — oo and R — ( we find

from (51) a self-consistent asymptotic solution ¢ ~» 0.5115, F — 1.097, 8, ~ 3.21./a
implying e(e) ~ 0.5278/./a. ‘
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8. Summary

The generalization performance of neural network models leaming from examples can
be characterized in different ways. Whereas investigations using statistical mechanics
have so far been concentrating on the typical behaviour studies in mathematical statistics,
computer sciences have often focused on the worst-case situation in order to derive uniform
convergence bounds for the quantities of interest. In the present paper we have shown how
one can calculate the generalization performance of the worst student perceptron learning
a linearly seperable Boolean function provided by a teacher perceptron with the help of
standard techniques of statistical mechanics of neural networks. The worst student is here
defined as the one with the largest difference between training and generalization error. Our
results describe the actual performance of the worst student in the thermodynamic Limit;
hence, they yield a crucial test for bounds on the worst-case behaviour as, for example,
provided by the Vapnik—Chervonenkis {vC) theorem.

‘We have found that for all values of the training set size « the overlap R between
the worst student and the teacher is negative. For @ — oo, R tends to zero from below.
Moreover, the worst student never belongs to the version space formed by all studenis
with zero training error. This implies that replica symmetry is always broken. In fact, the
replica-symmetric result for the difference between the training and generalization errors of
the worst student violates the rigorous upper bound provided by the vC theorem for large
values of a. The results in one-step replica symmetry breaking obey these bounds, while in
the case of a student perceptron with couplings restricted to the values -1 (Ising student)
they are probably exact. We have also studied the performance of the worst student out
of the version space, i.e. the perceptron with the worst generalization ability among those
that score perfectly on the training set. Again, replica symmetry is broken, however the
quantitative implications are insignificant and the asymptotic behaviour of the generalization
error for large values of o remains unchanged. In the case of an Ising student there is a
discontinuous transition to perfect generalization at o = 1.245 for beth the worst and the
typical student. Beyond this value the version space only consists of the teacher himself,
so that the typical and worst performances become identical.

‘We have found that the maximal possible difference between the leamning and
generalization errors decays asmptotically as 0.5278/./c. If one restricts the class of
perceptrons considered to the version space, the maximum possible generalization error
decreases with o asymptotically as 3/(2e). We thus found that the vC bounds giving
J1ega/a and log ar/c, respectively, overestimate the worst-case performance by logarithmic
factors in the training set size «. This can be traced back to the replacement of the
supremumn over all perceptrons by the respective sum in the derivation of these bounds,
which is a rather crude step in the case where the worst and the typical behaviour are not
as dramatically different as seems to be the case in the two-perceptron scenario investipated
here. In particular, the VC bound is not tight enough to infer from our calculations the so-far
unknown value of the vC dimension of the Ising perceptron.

The investigation of the performance of the worst student is a partial worst-case analysis
only, since the worst teacher and the worst possible distribution of training set patterns could
be considered as well. As a first step to include the choice of the teacher, we have also
studied the difference between leamning and generalization errors for the worst student trying
to leamn an unrealizable rule as given by an Ising student generalizing a spherical teacher.
The results are practically identical to the realizable case where an Ising student learns from
an Ising teacher. This is probably due to the fact that the overlap R of the worst student
is nearly zero, whereas the weight mismatch between teacher and student is known to be
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crucial only if they are fairly aligned with each other. It would be interesting to extend
these investigations to the case of 2 nonlinearly separable target rule.
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Appendix
In this appendix we sketch the calculation of the free energy (17)

f(ar, B R = -—A}_ilnwh%((logfndff (N = JH BL(NR —J-1)

xexp[wze( (-t eﬂ))]» (a1

using standard techniques [2, 3, 24]. Employing the replica trick,
(log 2)) = lim (((Z") — 1)/n ’

we have to determine

{z") = (( f Hdl" BN - (J“)z) S(NR—J°.T)
x exp [——-Ze(a(fﬂ - E#)( J_T 5”))]» | (A2)

Introducing auxiliary variables u, = TT&“ and using

- exp(—; ;ec—yz)) = 1#'1 leom + e Ha(-yn]

m'dla e 0 e o0
- HU 7 f At + Pl f = f dx;) exp(ixjay —ixgyp)  (A3)
570 -0 -0 -0
one can perform the average over the patterns £#. The integrand in (A2) then becomes

16V — (7% SR~ J° - Tyexp (iZS#“# + izxﬂlﬁ. - % ZS;’:

_stn“nzxfz__zu (x“)z‘“z Exu v E"mﬁ)) (a4
w a
If we introduce the order parameter matrix
1
abﬁﬁz{f"rfb - (AS)
7 .

the J-integrals decouple from the A-, x-, u- and s-integrals. Using integral representations
for the 8-functions in (A4) and for the new one enforcing (AS), the J integrals factorize in
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j and the A-, x-, u- and s-integrals in g. The s-integral can now be calculated. In this way
one finds

(Z") = j‘]_[ iia dz(:' dqa;:}?ab exp (N[E-ZE“

+3 Febguig Z G® +aG(R, ¢°") + — Z G (E*, F, G“)]) (A6)

a<b

with G(R, g°%} given by (22)

G(R, q“”)—longnufl_[

a=l1

exp(ina(la —uR)y— % > %2
a a

- Z Xa%pq™ + = Zxaxb — B/a Z Bc—xa)) (A7)

(a b}
and

1
@ b 2
G; (E°, F% G%) = logf ]al dJ%exp (— 3 Ea E,(J%

=Y Fyeyt - Z J“G") (A8)

a<h

In the limit N — ¢0, the order parameter integrals in (A6) can be found by the saddle-point
method. The saddle-point equations for £%, F*® and G® are algebraic and these parameters
can be expressed via R and ¢%°. Performing this substitution, one also realizes that the
result depends on the teacher-perceptron vector 7 oniy through Zj 7}2 = N. Hence a
separate average of f(w, 8, R) over the randomly chosen teacher T is superfluous in this
case. Having eliminated £9, F°® and G°, the only remaining order parameters are the g%,
so that one ends up with (21).

In the replica symmetry, g°° = g, @ # b, and expression (A7) can be simplified as
follows:

o0 di dx
G, R)=1og2f0 DufU = exp():xa(ka—uﬁ') —1 ] x;
- R2
i > (Zxa) —;Zﬂ(%))

o0 didx
= log?2 !
o8 fo Du.[D U 2ar

—itxy/g — RZ ge(-x))]

* di
=2Hj; Duth]ngm
X eXp (—(l‘uR-t‘ q- R —-59(—1))

exp(ix(h — uR) — I_qu2

A9
W —a) (49

where we have neglected higher-order terms in z. Substituting A — —A and using

= — R o _i_)
j;nufmg(ukdm/q R _thH( NeT PNz (A10)
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one arrives at (23).
In the case of the Ising student J; = X1, one has to perform the replacement

/Hd.!,- (N — J») — Try, I (A1)

in (A2) and only expression (AS) for GJ‘,-Z) is modified. It now becomes
GP(F, G*) =Tog Trym exp (3 FJ°J8 +T; Y 2 G*J%). (A12)
a-<h a

If also T; = =1 (realiiable rule), one can use the ‘gauge’ transformation J¢ —> TJ“ to

make GQ’ independent of T, ie. as in the spherical case, an explicit average over the
randomly chosen teacher is superfluous. In replica symmetry one then gets

R s GO = log Tre) exp (—f(z J“) - n—2- + G Z J“)
a a

Y

v —n-g- +10ngZTl‘;ja} exp ( (ﬁz + G) Z J")

= .—ng— +log fD {2 cosh(v'Fz + G)I?

F _
= —n—z- +n szlochosh (ﬁz + G) (%) (A13)

which together with (A9) gives (47).

In the unrealizable case one has to explicitly average over the teacher couplings using
PUTH ~ 8(%; T? — N). For N — oo this is equivalent to P({T;}) ~ exp(— X, 7}2/2)
and one finds in replica symmetry

G(z’(F, G)=—n—g-+nszlog2cosh(\/F+Gzz). (A1)

Using F + Gt —> F, the saddle-point equziticm for G becomes algebraic, G = R/(1 — g),
after eliminating G, one is left with (51).
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