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Abstract—We have developed a technique based on 
Evolutionary Computational Methods (ECM) that allows for 
the automated optimization of complex computationally 
modeled systems. We have demonstrated that complex 
engineering and science models can be automatically 
inverted by incorporating them into evolutionary 
frameworks and that these inversions have advantages over 
conventional searches by not requiring expert starting 
guesses (designs) and by running on large cluster computers 
with less overall computational time than conventional 
approaches.  We have applied these techniques to the 
automated retrieval of atmospheric and surface spectral 
signatures from Earthshine observational data.  We have 
demonstrated that in addition to automated spectral 
retrieval, ECM can also be used to evaluate the 
discriminability of scientific results as a function of 
requirements placed on the spectral model.  An important 
application of this technique is for the optimization of 
design parameters for spectral instruments. 1 2 
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1. INTRODUCTION 

We have developed a technique based on Evolutionary 
Computational Methods (ECM) that allows for the 
automated optimization of complex computationally 
modeled systems.  An important application of this 
technique is for the optimization of design parameters for 
spectral instruments.  Evolutionary computation is a method 
that operates on a population of existing computational-
based engineering models (or simulators) and competes 

1                                                             
1 1-4244-1488-1/08/$25.00 ©2008 IEEE. 
2 IEEEAC paper #1194, Version 6, Updated October 23, 2007 

them using biologically inspired genetic operators on large 
parallel cluster computers.  We have demonstrated that 
complex engineering and science models can be 
automatically inverted by incorporating them into 
evolutionary frameworks and that these inversions have 
advantages over conventional searches by not requiring 
expert starting guesses (designs) and by running on large 
cluster computers with less overall computational time than 
conventional approaches [1,2,3].  The result is the ability to 
automatically find design optimizations and trades, and 
thereby greatly amplify the role of the system engineer.  
ECM was originally developed for the automated retrieval 
of spectral data [4,5].  In this application we randomly vary 
spectral input components and solve for a synthetic spectral 
fit to real data.  We have found that when actual 
observational parameters are used as inputs, we get a very 
accurate fit to the data.  However, the ECM technique also 
allows us to determine the range of input conditions that 
will also produce good fits to the data.  Plotting this range of 
solutions on a principal components diagram allows us to 
determine the degeneracy of solutions that have non-ground 
truth inputs yet still fit the data.  This is a way of 
demonstrating the robustness of discriminability of the 
spectral technique.  We are now examining a secondary 
application of ECM where we can co-evolve the weighting 
of components of the spectral fitting (e.g. line centers, 
continuum values, spectral range, signal to noise, etc.).  
These parameters are tuned to maximize the spectral 
degeneracy in the principal components diagrams and 
thereby can be implemented to specify instrumental 
parameters and design requirements that optimize spectral 
discrimination.   

In this paper we will describe the ECM application to the 
automated retrieval of atmospheric and surface spectral 
signatures from Earthshine observational data.  We will also 
show how the synthetic spectral model can be used to define 
instrument requirements to optimize the discrimination of 
spectral features. 

2. EARTHSHINE SPECTRAL DATA 

Earthshine as an Analogue for Extrasolar Planets 

The next generation of terrestrial planetary exploration 
missions (NASA Terrestrial Planet Finder-Coronagraph 
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(TPF-C), ~0.5-1.6 microns, and NASA Terrestrial Planet 
Finder-Interferometer (TPF-I)/ESA-Darwin, ~6.5-18 
microns [6,7] has been designed to provide spectral 
information about terrestrial planets outside our solar 
system. Daunting technological challenges prohibit the 
ability to obtain spatial resolution on the extrasolar planets, 
and severely limit both the spectral and temporal sampling 
of even the most interesting discovery. The spectral 
information provided would be therefore averaged over the 
visible planetary disk and the exposure time, which may be 
hours, days, or weeks, depending on the target.  Due to these 
reasons, the interpretation of the observed spectrum may not 
be unique and instead a family of solutions (i.e., 
degeneracy) will provide an equally good explanation of the 
spectral features within a given accuracy.  
 
Previous research in this area has focused on measurements 
and preliminary interpretation of the Earthshine on the non-
illuminated side of the Moon [8,9], models of diurnal 
photometric variability on an Earth-like planet and models 
that simulate disk-averaged spectra from a description of a 
spatially resolved terrestrial planet on diurnal or seasonal 
time scales [10,11]. These 3D models are direct models, i.e., 
they compute observable quantities starting from a set of 
model parameters.   Analysis of Earthshine reflected off of 
the Moon (Figure 1) provides an excellent analogue of an 
extrasolar planet spectra integrated into one spatial 
resolution element. Additionally, knowledge of the ground-
truth observational conditions of the Earth at the time of the 
observations allows comparison of spectrally retrieved 
results. 

 

Figure 1:  Earthshine illuminated “dark” side of Moon. 
Copyright © 2005 by Jerry Lodriguss 

Classical Retrieval Methods 

Retrieval in general is the process that solves the inverse 
problem, which is the determination of the model 
parameters for a given set of observed quantities. The 
inverse problem in spectral retrieval consists of determining, 

given an observed spectrum, the combination (solution) of 
planetary and atmospheric conditions at the time of the 
observation. The existence of multiple equally valid 
solutions (i.e., degeneracy), and the lack of sensitivity both 
affect the inversion process often to the point of preventing 
a successful retrieval. This problem has been studied 
extensively using a number of different approaches.  A good 
theoretical understanding of the inversion process has been 
achieved in studies of dynamical systems, information 
theory and complexity theory, but the underlying techniques 
have not yet been systematically applied within the 
atmospheric remote sensing community.  

The traditional retrieval techniques developed to study the 
environments of the Earth and other planets in the solar 
system, are inadequate to analyze disk-time averaged 
spectra because they assume spatially homogeneous 
environments and short observational time scales [12].  
Moreover, traditional techniques benefit from a fairly good 
knowledge of the environment under investigation. This 
information is used to constrain the initial parameter set, and 
the retrieval method will search for the best possible 
solution that reproduces the observed spectrum in the local 
domain of the initial condition. The assumption that the 
solution needs to belong to the local domain of the initial 
condition is an unavoidable limitation of traditional 
gradient-based methods [13].  

We have employed Evolutionary Computational Methods 
(ECM), developed by the Center for Evolutionary 
Computation and Automated Design (CECAD) at the Jet 
Propulsion Laboratory, Caltech, to automatically retrieve 
planetary and atmospheric information from disk-averaged 
planetary spectra [4,5]. ECM has been coupled to the 
"direct" model developed by Tinetti et al. [10,11] that 
simulates the 3-D spectral response of the planet. ECM is 
used to optimize planetary parameters of interest (here 
surface type and cloud fraction) in an iterative process that 
minimizes a fitness function measuring the degree of 
similarity between observed and synthetic spectra.  The 
specific functional formula of the fitness function depends 
on spectral resolution, spectral integral, and signal-to-noise 
ratio of the observed data.  Repeated application of ECM 
automatically yields a population of solutions (parameter 
sets) within the user-defined accuracy (fitness). 

Using this 3-D retrieval method the final fit between the 
observed spectrum and the synthetic one is no longer 
heuristic with respect to the space inhomogeneities, but is 
the result of an accurate screening of possibilities such as 
surface types, viewing geometries, phases, and illumination. 
The advantage of ECM over traditional retrieval methods is 
the ability to perform an automatic unbiased search (not 
dependent on initial, ad-hoc expert guesses) for all solutions 
within the entire model-defined parameter space, using 
search criteria that are computationally far more economical 
than complete enumeration (brute force), Monte Carlo, or 
random searches. The only a priori information used is what 
is built into the synthetic spectral models employed. 

 



 3 

 

Figure 2:  Phase and viewing geometry observed by 
Woolf et al. (2002) during their Earthshine 

measurement. 

We present here first results of this method applied to the 
retrieval of surface and atmospheric parameters from an 
Earth disk-averaged spectrum in the optical, observed by 
Woolf et al., [8]. Further, we estimate and analyze the 
degree of degeneracy of the retrieved solutions.  

3. TECHNICAL APPROACH AND METHODOLOGY 

The developed spectral retrieval framework is composed of 
three modules: the central core is ECM; on the front end is 
the Synthetic Spectra Generator, which, coupled with the 
ECM, generates a population of automatically retrieved 
spectral solutions; on the back-end is the Synthetic Spectra 
Degeneracy Analyzer, which allows an analysis of the 
uniqueness of individual solutions within the population. 
Figure 3 shows a schematic diagram of the ECM-driven 
spectral retrieval framework.  

 

Figure 3:  Schematic diagram of the spectral retrieval 
framework. 

Evolutionary Computational Methods (ECM) 

ECM is comprised of two well-proven multi-dimensional 
stochastic and evolutionary optimization techniques: 
Genetic Algorithms (GA) and Simulated Annealing (SA). 

Unlike other traditional optimization algorithms, both SA 
and GA are not fundamentally limited by restrictive 
assumptions about the search space such as continuity and 
existence of derivatives. GA and SA have been successfully 
used for a variety of high-dimensional optimization 
problems in space systems [1,14] and engineering and 
biomedical applications [15,16]. SA has also been applied to 
the problem of Rutherford backscattering spectral retrieval 
[17].  

Genetic Algorithms (GA) —Genetic algorithms [18,19] rely 
on biologically inspired computational techniques that 
utilize evolutionary operators on a population of individuals. 
The process starts with an initial population of individuals 
(potential solutions), which then undergoes a sequence of 
unary (mutation) and higher order (crossover) 
transformations. The individuals strive for survival: a 
selection (reproduction) scheme, biased towards selecting 
fitter individuals, produces the individuals for the next 
generation. After several generations, the population 
converges to a set of optimal solutions, which represent the 
intrinsic degeneracy in the search space. 

Simulated Annealing-related Algorithms (SA)—The 
objective of SA [20,21] is to minimize an energy function E, 
which is a function of N variables (the observational and 
compositional parameters for the synthetic spectral data). 
The minimization is performed by randomly changing the 
value of one or more of the N variables and reevaluating the 
energy function E. Two cases can occur: 1) the change in 
the variable results in a new, lower energy function value; or 
2) the energy function value is higher or unchanged. In the 
first scenario, the new set of variables is stored and the 
change accepted. In the second scenario, the new set of 
variables is only stored with a certain likelihood (Boltzmann 
probability, including an annealing temperature). This 
process reduces the probability that the optimization 
algorithm becomes “trapped” in local minima as can be the 
case with “greedy” downhill optimization techniques (e.g., 
gradient-descent). The annealing temperature directly 
influences the Boltzmann probability by determining the 
likelihood of accepting an energetically unfavorable step. 
The temperature is gradually decreased (cooling schedule) 
and the overall procedure is repeated until the annealing 
temperature has reached its end value, a preset number of 
iterations has been exceeded, or the energy function has 
reached an acceptable user-defined level. 

Synthetic Spectra Generator 

The Synthetic Spectra Generator generates a library of 
synthetic spectra using radiative transfer and planetary 
models as well as planetary and atmospheric parameters as 
input (e.g. the size of the planet, gas-mixing ratio of the 
atmospheric components, temperature and pressure profiles, 
surface albedo, cloud/aerosol optical properties, stellar 
spectrum, etc).  
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In this work, the optical radiances were generated using the 
Spectral Mapping Atmospheric Radiative Transfer 
(SMART) model [22,23] for the clear sky and cloudy cases. 
The inputs to this model were the vertical profiles of 
temperature and gas-mixing ratios extracted from the 
Atmospheric Infrared Sounder (AIRS) Level 2 Simulation 
System [24] simulations. Estimates of surface reflectance 
and emissivity are based on ASTER data.  

The planetary 3D geometry and disk-averaging technique 
we chose for our calculations, is described in Tinetti et al., 
[10,11]. The model uses a partition of the sphere, Healpix 
(Hierarchical Equal Area and Iso-Latitude Pixelization) that 
was originally implemented for the NASA-WMAP mission 
[25].  The planetary sphere can be resolved with an arbitrary 
number of pixels. A library of spectra can be built, (Figure 
4) by running the radiative transfer codes for each pixel, for 
a variety of situations, including temperature profile, gas 
mixing ratios, surface type (ocean, vegetation, desert, ice 
etc.) or the cloud/aerosol type (Cirrus, Alto-Stratus etc.), 
viewing and stellar angles. By specifying the positions of 
the observer and the star, which determine the phase and the 
viewing geometry, a disk-averaged spectrum is computed 
by integrating the area-weighted pixels over the visible disk. 
A time-averaged spectrum can be obtained by integrating 
over time the contributions of the disk-averaged spectra for 
a rotating planet seen from a specified viewing point. 

Figure 4:  Disk-averaged spectra of the Earth in the 
optical, showing a planet covered by one surface or 
cloud type at a time.  The phase selected for these 

simulations is the one shown in Figure 2. 

Synthetic Spectra Degeneracy Analyzer 

The solutions obtained with ECM are points in the high-
dimensional solution (parameter) space. To characterize the 
degeneracy of the solutions found by ECM, the Synthetic 
Spectra Degeneracy Analyzer relies on several well-
established mathematical techniques such as Level Set 
Analysis (LSA) and Principal Component Analysis (PCA). 

Level Set Analysis—LSA groups ECM results into a set of 
clusters. If more than one cluster can be identified, the 

conclusion is that the retrieval process has produced a set of 
equivalent or degenerate solutions, which are precious input 
for the subsequent science-based analysis. The LSA process 
starts with assigning a “membership value” to each solution 
for each cluster. The number of clusters is a fixed parameter 
and the centers of the clusters in the parameter space are 
themselves obtained from an optimization process. The 
membership value is for example a normalized function of 
the Euclidean distance between solutions in the parameter 
space. A solution is said to belong to a particular cluster if 
the membership value is larger than a set threshold. For each 
fixed number of clusters, the percentage of solutions 
belonging to a cluster gives a measure of the quality of this 
particular clustering configuration. The best clustering 
configuration is the one with the largest percentage of 
solutions belonging to a cluster. Details about the LSA 
procedure are given in Huntsberger et al, [26]. 

Principal Components Analysis (PCA)—PCA is employed 
to visualize and characterize the solutions found by ECM. A 
Singular Value Decomposition of the matrix of column 
vectors representing the entire set of solutions found by a 
Genetic Algorithm or Simulated Annealing optimization is 
performed to find the set of deviations in the solutions 
(principal values) along a corresponding set of orthogonal 
directions (principal component vectors) which are sorted in 
descending order so that the first principal component is the 
direction of maximum deviation and the last principal 
component is the direction of minimum deviation.  A 
projection of the solutions onto the plane defined by the first 
two principal component vectors tends to exhibit the largest 
separation between solutions.  The solutions tend to clump 
together in clusters about an exemplar positioned at the 
center of each cluster, enabling an improved visualization of 
potential degeneracy in the solution set. 

4. ECM SPECTRAL RETRIEVAL STUDIES 

We have performed a set of ECM-driven retrieval studies in 
retrieving an Earthshine spectrum, which serves as an 
analogue for Terrestrial Planet Finder-Coronagraph (TPF-C) 
data. The Earthshine spectrum was measured by Woolf et al. 
with the Steward Observatory 2.3m telescope [8].  

For the retrieval studies presented here, several 
approximations are made in order to confine the retrieval 
parameter space. First, a minimal set of component 
synthetic spectra is prepared by varying albedo types and 
stellar and viewing angles. The trace gas and temperature 
profiles of the atmosphere remain fixed. Nine different 
albedo types are considered and are characterized as ocean, 
forest, grass, ground, tundra, ice, high cloud, medium cloud, 
and low cloud. A component spectrum at a general angle is 
obtained through linear and bicubic spline interpolations. 
The resulting library of the component spectra allows us to 
explore the various configurations of albedo types within a 
fixed atmosphere profile. Second, the Earth’s surface area is 
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divided into 48 equal-area pixels in order to spatially resolve 
the visible planetary disk, and each of the pixels is assumed 
to consist of the same albedo properties. This approximation 
captures the effect of the overall averaged configuration of 
the albedo types, but eliminates the effect of the spatial 
distribution of the albedo-type configuration. Note that 
although the albedo properties are uniform through pixels, 
the contribution of each pixel to the disk-averaged spectrum 
is still different due to its relative location to the sun and the 
viewer.  

The observer and solar positions were known from the 
observation and kept fixed, thereby constraining both the 
phase and the viewing geometry (Fig. 3) and reducing the 
number of illuminated pixels to 22. Using the selected 
observer-stellar positions, a disk-averaged spectrum was 
generated, for each of the cloud/surface type configuration 
prescribed by ECM. ECM is used to optimize these different 
cloud/surface fractions in an iterative process that minimizes 
a fitness function measuring the degree of similarity 
between the observed and the synthetic spectrum. Repeated 
application of ECM automatically yields a population of 
solutions (parameter sets) within the user-defined accuracy 
(fitness). 

Two distinct retrieval studies were designed using ECM: i) 
evolution of one large population with 1000 individuals and 
ii) evolution of multiple (19) islands with 100 individuals in 
each island. The two retrieval studies are prepared to 
compare their effectiveness in terms of the fitting quality 
and degeneracy degree of retrieved solutions. As a first 
guess, it is expected that the first study has an advantage of 
a sufficiently large population size over the second study, 
while the second study has an advantage of diversity 
promotion over the first study. Besides the population size 
and the number of populations, the two studies use the same 
gene representations and algorithmic procedures for 
selection, reproduction, and replacement steps. A gene is 
represented by a real-valued parameter, which corresponds 
to the weight/percentage of one albedo type. A binary 
tournament is used for selection. Mutation with probability 
0.1 per gene and Crossover with rate 0.8 per individual are 
used for reproduction. The population of the next generation 
is composed of the top 15% of individuals from the current 
population and the offspring generated from selection and 
reproduction procedures.    

5. RESULTS 

These two retrieval studies returned over 2800 automatically 
generated retrievals satisfying the error criteria (fitness) of 
10% least squares match to the observed spectra. The first 
study resulted in 990 eligible solutions out of 1000 
candidates in the final population. The second study led to 
1835 eligible solutions out of 1900. This shows that the 
resulting fitting quality and success rate are comparable 
between the two studies. The total computational time for 

these studies is 20 hours with 16 processors working in 
parallel on a Linux-based cluster computer with 3.06 GHz 
Pentium IV CPUs. Figure 5 shows the synthetic spectra 
generated by several retrieved solutions in comparison with 
the observed spectrum.  

 

Figure 5:  Synthetic spectra fitted to Earthshine data. 

The retrieved solutions are processed to determine the 
degeneracy degree. They are classified into clusters using 
LSA.  Figure 6 displays the albedo component configuration 
of the 17 identified cluster centers. The LSA-selected cluster 
centers illustrate the representative picture of the variations 
of the albedo configurations among all the 2825 retrieved 
solutions. According to the LSA results, the second study 
led to more distinct solutions (cluster centers) than the first 
study, indicating that the second study is more efficient in 
controlling the diversity of the solutions.  
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Figure 6:  Albedo configurations of the synthetic spectra 
found by the Synthetic Spectra Degeneracy Analyzer.  

Each configuration leads to a synthetic spectrum that 
matches the Earthshine data within a 10% error bar. 
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6. DISCUSSION 

The representative solutions of the retrieved solutions, 
shown in Figure 6, enable a science-based discussion of the 
results. Some of the cluster centers almost exclusively differ 
by the ratios of the grass to forest coverage (e.g., cluster 9 
has a high ratio, whereas cluster 8 has a low ratio). This 
result suggests that grass and forest coverage are equivalent 
with respect to their spectral contribution within error-bars 
(Figure 7).  

 

Figure 7:  Principal Component Analysis results 
obtained with the Synthetic Spectra Degeneracy 

Analyzer. 

The cluster center solutions also suggest that low clouds and 
ice cannot be retrieved from the Earthshine spectrum [8], in 
agreement with known observational parameters and 
satellite data (i.e., ground truth). Due to the viewing 
geometry and season of the year (N.H. summer), in fact, ice 
was not visible. As concerns low clouds, they are easily 
masked by medium and high clouds, which reside at higher 
altitude.  It is important to note that these conclusions were 
reached without introducing any prior knowledge of the 
system. This demonstrates that the ECM-based retrieval 
framework introduced here seems to be capable of 
producing meaningful scientific results with a minimal set 
of a priori assumptions. ECM-based spectral retrieval will 
become particularly relevant in the context of extra-solar 
planetary studies, where close to nothing is known about the 
observed objects. 

Outlook 

The ECM-based spectral retrieval process can be refined by 
increasing the parameter space to a large number of 
components. Further, one can also iterate the manner in 
which fitnesses are computed by examining large numbers 
of solutions thereby optimizing fitness functions, i.e., for 
maximizing discriminability of degeneracies among 
solutions. In forthcoming work, we will explore/expand the 
search space as permitted by the scalability of the available 
computer resources. We will also run numerical 
experiments to assess the gain/loss in information content 

induced by an increased spectral resolution, which in turn 
requires an increased integration time necessary to complete 
the observations. 

We have conducted preliminary experiments using a 
synthetic target spectrum instead of the observational 
Earthshine spectrum as a standard reference for automated 
spectral retrieval using ECM.  Retrievals were run for 
various modifications of the fitness functions.  Our standard 
method uses minimization of the area between the reference 
and retrieved spectra.  Additional methods preferentially 
weight special regions of the target spectrum (e.g. 
continuum values, line centers, steep slopes, etc.).  The 
results of PCA were compared for varying constraints on 
the fitness function to determine if clustering (i.e., spectral 
degeneracy) can be modulated.  Initial results indicate that 
constraints on instrument requirements (i.e. wavelength 
range, signal to noise, resolution, etc.) can be determined 
from these ECM-based retrievals. 

7. CONCLUSIONS 

We have demonstrated that Evolutionary Computational 
Methods (ECM) can be used for automatic spectral retrieval 
and that the results are scientifically consistent with ground 
truth. We have further demonstrated that we can use 
clustering tools to discriminate classes of spectral fits and 
identify degeneracy (non-uniqueness) in solutions. The 
computational time used in these experiments indicates that 
full parameter retrievals are achievable with available 
computational resources in reasonable run-times.   

Preliminary experiments using synthetic target spectra 
indicate that spectral instrument design parameters can be 
derived from scientific forward models of the observational 
environment.  Evolutionary Computational Methods are 
applied to the forward models to retrieve large populations 
of synthetic spectra that can be evaluated under varying 
fitness conditions to maximize spectral discriminability.  
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