in our patients is challenging and should prompt adequate neuro-imaging, focusing on possible ESS and appropriate investigation in order to detect abnormal intracranial pressure.

References


DEVELOPMENT OF THE TÜBINGEN NEURO-OPTHALMOLOGICAL PERIMETRIC DATABASE

R. BURTH1, E. HÖLPER1, S. MAYER1, I. MILDENBERGER1, G. MAGNUSSON1, U. SCHIEFER1 and W. FINK2

1University Eye Hospital, Department II, Tübingen, Germany; 2California Institute of Technology, Pasadena, CA, USA

Introduction

This project is aimed at the development of a computer-based, primary neuro-ophthalmological perimetric database for research, education and patient care. It is divided into three phases:

1. The perimetric examination protocol was analyzed and optimized through computer support. Each perimetric finding is 'manually' classified by a specialist according to the type of visual field defect (e.g., homonymous scotomas, retinal nerve fiber bundle defects, etc.) and its reliability rating. Results of this phase have reduced the administrative effort, created a paperless digital archive and allowed faster access for scientific evaluation.

2. Perimetric results obtained before the development of the new protocols are introduced into the electronic database by scanning, digitizing and classifying the perimetric printouts (as mentioned above). Using these procedures, former automated perimetric results of more than 10,000 patients with primary neuro-ophthalmological pathologies will be implemented into the database.

3. The manual classification will be complemented assisted by an expert system, which is based on a neural network.

With present computer power and development tools, it is possible to rebuild the existing Tübingen perimetric archive of printouts into a computer-based database. A pilot project demonstrated that it is possible to scan and digitize automated perimetric findings. For scientific evaluation, each perimetric finding is classified according to the type of visual field defect. In addition, the final diagnosis is stored in the database.

Methods

The application is designed like a two-phase client/server model using Borland Delphi 3.0 as a developmental tool and Interbase as the database system10. The Borland Database

Address for correspondence: Roland Burth, University Eye Hospital Tübingen, Department II, Schleichstraße 12 D-72076 Tübingen, Germany

Perimetry Update 1998/1999, pp. 533-538
Proceedings of the XIXth International Perimetric Society Meeting, Gardone Riviera (BS), Italy, September 6-9, 1998 edited by M. Wall and J.D. Wild
engine and the SQL links are necessary to exchange data from the client to the server and vice versa (Fig. 1). We use standard scan software to scan and special software for digitizing perimetric printouts to rebuild the existing perimetric archive. The computer configuration (Fig. 2) is implemented according to the project requirements.

Results

Since August 1997, only the first part of the project has been in clinical use. Between October 15, 1997 and July 15, 1998, 1727 perimetric examinations were carried out. Only results of the Tübingen Automated Perimeter (TAP), obtained with the threshold-oriented slightly supraliminal strategy (30° visual field, 191 test locations) were considered. The distribution of the visual field defect classification is shown in Figure 3. The diagnosis frequency distribution for the visual field classification 'nerve fiber bundle defect' can be seen in Figure 4.

Discussion

The expert system is especially promising since the comparatively high density of test point locations enables an exact description of the extent, form and position of scotomas. The purpose of the database is to support the ophthalmologist in the interpretation and differential diagnosis of perimetric findings.

Using the database results already in existence, we were able to test the first prototype of the expert system at the University Eye Hospital in Tübingen. The initial results of this system, with classification of straightforward perimetric findings, look promising.
Fig. 3. Visual field classification frequency distribution (n=2605).

Fig. 4. Diagnosis frequency distribution for the visual field finding 'nerve fiber bundle defect'; the column 'others' represents cases with frequency values of <1% each.
References

2. Fink W: Anwendung theoretisch-physikalischer Methoden in der Ophthalmologie. Dissertation, Institute for Theoretical Physics, University of Tübingen 1997

INDEX OF AUTHORS

Altieri, M., 301
Anderson, R.S., 177, 179, 241, 495
Artes, P.H., 95, 243
Ata, N., 223
Baldor, D., 17
Benda, N., 223
Bengtson, D., 3, 125
Bonomi, L., 413
Braun, C., 511
Briguglio, M., 491
Brito, C.F., 253
Brusini, P., 349, 409
Bunco, C., 147
Burk, R.O.W., 453, 463
Burth, R., 533
Busatto, P., 349, 409
Calabria, G., 425
Capris, P., 11, 301, 433, 483
Carenini, L.L., 17
Castagna, I., 491
Chandy, S.J., 95, 243
Chauhan, B.C., 243
Chen, H.C., 355, 503
Chen, P.P., 395
Cimatti, P., 529
Cioffi, G.A., 103
Colenbrander, A., 307
Corallo, G., 11, 433
Courtright, P., 375
Crabb, D.P., 131
Curran, B.J., 495
D’Andrea, A., 491
D’Andrea, D., 491
Danheim, F., 523
De Natalis, K., 413
De Bie-Raakman, M.A.C., 17
Demirel, S., 229
Dietrich, T.J., 223, 261, 511
Dorigo de Rosa, M.T., 529
Doco, D., 529
Drance, S.M., 375

Driussi, G.B., 349
Endadi, A., 333, 339
Endo, N., 403, 443
Ennis, F.A., 177, 179, 241
Fellman, R.L., 111
Fendrich, T., 453
Fink, W., 283, 533
Fitzke, F.W., 75, 131, 139, 147, 201, 381
Flannagan, J.G., 355, 503
Fontana, L., 421
Formenti, S., 477
Forsman, E.R., 341
Frisen, L., 289
Gandolfi, E., 11, 433, 477, 483
Gaeway-Heath, D.F., 381
Gatti, G., 11
Gedda, U.K., 391
Gentile, B., 491
Ghika, R., 453
Gofen, A., 307
González de la Rosa, M., 43, 51, 59
González Hernández, M., 51
Goto, H., 365
Goto, K., 517
Guidi, C., 433
Harasswa, K., 403
Harwerth, R.S., 167
Hayashi, H., 443
Heijl, A., 3, 125
Henson, D.B., 95, 243
Hitchings, R.A., 131, 139, 147, 381, 421
Hofmann, C., 209
Höltfer, E., 533
Horikoshi, T., 365
Hosé, C., 355, 503
Iester, M., 301, 375, 425
Inazumi, K., 73
Inoue, T., 517
Inoue, Y., 517