The Year Book of Ophthalmology®

Editor-in-Chief
Christopher J. Rapuano, MD
Professor of Ophthalmology, Jefferson Medical College of Thomas Jefferson University; Co-Director, Cornea Service; Co-Director, Refractive Surgery Department, Wills Eye Hospital, Philadelphia, Pennsylvania
Editorial Board

Associate Editors

Elisabeth J. Cohen, MD
Professor of Ophthalmology Jefferson Medical College of Thomas Jefferson University; Director, Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania

Ralph C. Eagle, Jr., MD
The Noel and Sara L. Simmonds Professor of Ophthalmic Pathology, Jefferson Medical College of Thomas Jefferson University; Director, Department of Pathology, Wills Eye Hospital, Philadelphia, Pennsylvania

Adam E. Flanders, MD
Professor of Radiology and Rehabilitation Medicine, Thomas Jefferson University, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania

Kristin M. Hammersmith, MD
Instructor, Jefferson Medical College, Thomas Jefferson University, Assistant Surgeon, Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania

Jonathan S. Myers, MD
Director, Glaucoma Service Diagnostic Laboratory; Assistant Professor, Thomas Jefferson University; Associate Attending, Glaucoma Service, Wills Eye Hospital, Philadelphia, Pennsylvania

Leonard B. Nelson, MD, MBA
Co-Director of Pediatric Ophthalmology, Wills Eye Hospital; Associate Professor of Ophthalmology and Pediatrics, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania

Robert B. Penne, MD
Assistant Professor, Jefferson Medical College of Thomas Jefferson University; Co-Director Oculoplastic Department; Attending Physician, Wills Eye Hospital, Philadelphia, Pennsylvania

Robert C. Sergott, MD
Clinical Professor of Ophthalmology, Neurology and Neurosurgery, Jefferson Medical College and Thomas Jefferson University; Attending Surgeon, Wills Eye Hospital, Philadelphia, Pennsylvania

Carol L. Shields, MD
Professor, Thomas Jefferson University, Thomas Jefferson University, Co-Director Oncology Service, Wills Eye Hospital, Attending Surgeon, Oncology Service, Wills Eye Hospital, Philadelphia, Pennsylvania

Richard Tipperman, MD
Assistant Professor, Wills Eye Hospital, Philadelphia, Pennsylvania

James F. Vander, MD
Clinical Professor Ophthalmology, Thomas Jefferson University; Attending Surgeon, Retina Service, Wills Eye Hospital, Philadelphia, Pennsylvania
Table of Contents

1. Cataract Surgery
 Introduction

2. Refractive Surgery
 Mitomycin C and Excimer

3. Glaucoma
 Glaucoma’s Impact

4. Cornea
 The Boston Keratoprosthesis

5. Retina

6. Oculoplastic Surgery
 Anticoagulants: A surgical

7. Pediatric Ophthalmology
 Where have all the Pediatricians

8. Neuro-ophthalmology
 Introduction

9. Imaging
 Introduction

10. Ocular Oncology
 The International Classification is practical and predictive

11. Pathology
 Introduction

12. Socio-Economics
 Cost of healthcare and public health

Subject Index
Author Index
To facilitate the use of the Year Book of Ophthalmology® as a reference tool, all illustrations and tables included in this publication are now identified as they appear in the original article. This change is meant to help the reader recognize that any illustration or table appearing in the Year Book of Ophthalmology® may be only one of many in the original article. For this reason, figure and table numbers will often appear to be out of sequence within the Year Book of Ophthalmology®.

Foreword

I am again thrilled that my Editor job with the 2008 edition of the Year Book of Ophthalmology® always, the goal of the Year Book of Ophthalmology® the most important peer-reviewed ophthalmic subspecialties from the American Academy of Ophthalmology. The ever expanding number of ophthalmology journals, it is important to keep up with the latest developments in the field. The Year Book fulfills this task and puts it into practice. The Year Book can't be beat for knowledge in other sub-specialties.

I encourage readers to contact me at willseye.org) with comments, questions, and suggestions. I look forward to hearing from you.
Foreword

I am again thrilled that my Editorial team has done such an outstanding job with the 2008 edition of the Year Book of Ophthalmology! As always, the goal of the Year Book is to provide a concise summary of the most important peer-reviewed journal articles covering the span of ophthalmic subspecialties from the previous year. The summary is accompanied by brief discussion of the relevance (or irrelevance) of the paper to practicing ophthalmologists. I believe it does just that!

With the ever expanding number of peer-reviewed journals, not to mention “throw-away” journals, it is getting harder and harder to not only keep up with the latest developments, but also to sift through the literature to find what is important. The Year Book of Ophthalmology accomplishes that task and puts it into perspective. For those of us with hardly enough time to review the important literature in our own sub-specialties, the Year Book can’t be beat for keeping us abreast of the significant issues in other sub-specialties.

I encourage readers to contact me (via e-mail is the best, at cjrapuano@willseye.org) with comments, criticisms and suggestions. Your input continues to help mold the Year Book into what is most useful for our readers. I look forward to hearing from you.

Christopher J. Rapuano, MD
open-angle glaucoma randomized to
axolol (n = 129) or no immediate
3 months for up to 11 years.

Analyses, expressed by hazard
ratios (95%).

progression, defined by perimetric
as 67% when follow-up ended
ximately halved progression risk
results were similar for patients with
0.41 and 0.55). Baseline progression
are higher IOP, exfoliation, bilateral
reported. New baseline predictors
fusion pressure in all patients
(1.04–1.94), cardiovascular disease
26) in patients with higher baseline
ure (BP) (£125 mmHg; HR, 0.46; h
ower baseline IOP. Postbaseline
at follow-up, with 12% to 13%

Progression in the Early Manifest Glaucomas (n = 255)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Hazard Ratio (95% Confidence Interval)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.53</td>
<td>(0.39–0.72)</td>
<td><0.0001</td>
</tr>
<tr>
<td>1.77</td>
<td>(1.29–2.43)</td>
<td>0.0005</td>
</tr>
<tr>
<td>2.12</td>
<td>(1.30–3.46)</td>
<td>0.0026</td>
</tr>
<tr>
<td>1.88</td>
<td>(1.35–2.63)</td>
<td>0.0002</td>
</tr>
<tr>
<td>1.51</td>
<td>(1.11–2.07)</td>
<td>0.0095</td>
</tr>
<tr>
<td>1.42</td>
<td>(1.04–1.94)</td>
<td>0.0268</td>
</tr>
<tr>
<td>1.39</td>
<td>(1.00–1.91)</td>
<td>0.0510</td>
</tr>
<tr>
<td>0.69</td>
<td>(0.44–1.07)</td>
<td>0.0971</td>
</tr>
</tbody>
</table>

Hg lower
Hg higher
Hg higher
lighter
um lower

average increase per millimeter of mercury in all patients (HRs, 1.12–1.13 per mmHg higher) and similar results in patients with higher and lower baseline IOP (HRs, 1.15 and 1.13 per mmHg higher). Disc hemorrhages (HR, 1.02; 95% CI, 1.01–1.03 per percent higher frequency) also predicted progression. Thinner central corneal thickness (CCT) (HR, 1.25; 95% CI, 1.01–1.55 per 40 µm lower) was a new significant factor, a result observed in patients with higher baseline IOP (HR, 1.42; 95% CI, 1.05–1.92 per 40 µm lower) but not lower baseline IOP, with significant IOP–CCT interaction.

Conclusions.—Treatment and follow-up IOP continued to have a marked influence on progression, regardless of baseline IOP. Other significant factors were age, bilaterality, exfoliation, and disc hemorrhages, as previously determined. Lower systolic perfusion pressure, lower systolic BP, and cardiovascular disease history emerged as new predictors, suggesting a vascular role in glaucoma progression. Another new factor was thinner CCT, with results possibly indicating a preferential CCT effect with higher IOP (Table 2).

Treatment of glaucoma in this trial halved the progression risk. Baseline progression risk factors were as follows: Higher IOP, exfoliation, bilateral disease, older age, low ocular systolic perfusion pressure, cardiovascular disease, and thinner corneal pachymetry. Post-baseline progression factors were as follows: IOP level (12% increase per mm Hg) and disc hemorrhages. These are in concordance with findings from other major glaucoma trials and support the use of these in the clinical management of patients with glaucoma.

L. J. Katz, MD

Early detection of glaucoma by means of a novel 3D computer-automated visual field test

Nazemi PP, Fink W, Sadun AA, et al (Doheny Eye Inst and Keck School of Medicine at the Univ of Southern California, Los Angeles; et al)

Purpose.—A recently devised 3D computer-automated threshold Amsler grid test was used to identify early and distinctive defects in people with suspected glaucoma. Further, the location, shape and depth of these field defects were characterised. Finally, the visual fields were compared with those obtained by standard automated perimetry.

Patients and Methods.—Glaucoma suspects were defined as those having elevated intraocular pressure (>21 mm Hg) or cup-to-disc ratio of >0.5. 33 patients and 66 eyes with risk factors for glaucoma were examined. 15 patients and 23 eyes with no risk factors were tested as controls. The recently developed 3D computer-automated threshold Amsler grid test was used. The test exhibits a grid on a computer screen at a preselected
Computer automated amsler grid test for perimeter

![Contrast sensitivity graph](image)

Results.—In this pilot study 79 suspect group repeatedly demonstrated the 3D depictions of visual field defects were shown in 29% of the eyes detected in the control group.

Conclusions.—The 3D computer may demonstrate visual field abnormally in glaucoma suspects with normal acuity. This test may be used as a screen for glaucoma (Fig 6).

Current visual field testing is not optimal, is not particularly sensitive to early attempts to overcome one or more of the ways to test the field. A recent computer program that varies contrast to test the field and render a 3D reconstruction of a central target and outlines any scotoma sensitive computer screen. The test contrast levels during 3 to 5 minutes for normal patients, were asked to Humphrey perimeter. The control group in the glaucoma suspect group, 79% of the defects were not apparent on Humphrey and typical of glaucoma. This pilot study defects would eventually become apparent if able to compare the test with the results of the test is that it is probably much more difficult for some subjects, compromising field testing strategy that could be considered for some patients.
grey scale and angular resolution, and allows patients to trace those areas on the grid that are missing in their visual field using a touch screen. The 5 minute test required that the patients repeatedly outline scotomas on a touch screen with varied displays of contrast while maintaining their gaze on a central fixation marker. A 3D depiction of the visual field defects was then obtained that was further characterised by the location, shape and depth of the scotomas. The exam was repeated three times per eye. The results were compared to Humphrey visual field tests (ie, achromatic standard or SITA standard 30-2 or 24-2).

Results.—In this pilot study 79% of the eyes tested in the glaucoma-suspect group repeatedly demonstrated visual field loss with the 3D perimeter. The 3D depictions of visual field loss associated with these risk factors were all characteristic of or compatible with glaucoma. 71% of the eyes demonstrated arcuate defects or a nasal step. Constricted visual fields were shown in 29% of the eyes. No visual field changes were detected in the control group.

Conclusions.—The 3D computer-automated threshold Amsler grid test may demonstrate visual field abnormalities characteristic of glaucoma in glaucoma suspects with normal achromatic Humphrey visual field testing. This test may be used as a screening tool for the early detection of glaucoma (Fig 6).

Current visual field testing is not optimal. It relies on the patient's cooperation, is not particularly sensitive to early glaucoma, and it is not portable. Several attempts to overcome one or more of these shortcomings have resulted in novel ways to test the field. A recent computer-based field test is one such example. This new test varies contrast to test the central vision in an Amsler grid fashion and render a 3D reconstruction of the hill of vision. The patient fixates on a central target and outlines any scotomas with his or her finger on a touch-sensitive computer screen. The test is repeated 5 times with varying preset contrast levels during 3 to 5 minutes time. Two groups, glaucoma suspects and normal patients, were asked to take both this test and conventional Humphrey perimeter. The control group of normal patients all had normal fields. In the glaucoma suspect group, 78% of eyes had field defects on the new test that were not apparent on Humphrey perimeter. The defects were reproducible and typical of glaucoma. This pilot study was not able to determine if the defects would eventually become apparent on Humphrey perimeter, nor was it able to compare the test with the results of other field strategies like short wavelength perimeter or frequency doubling perimeter. The other advantage of the test is that it is probably much more portable than conventional perimeter. It still relies on the patient's cooperation and I wonder if a finger is a fine enough stylus to outline some scotomas. Although those issues might make the test difficult for some subjects, overall though this seems to be a very promising field testing strategy that could very well help in the care of glaucoma and screening for the disease.

J. D. Henderer, MD